Chapter 2
Functions and Their Graphs

Section 2.1

1. \((-1,3)\)

2. \[3(-2)^2 - 5(-2) + \frac{1}{(-2)} = 3(4) - 5(-2) - \frac{1}{2}\]
 \[= 12 + 10 - \frac{1}{2}\]
 \[= \frac{43}{2} \text{ or } 21\frac{1}{2} \text{ or } 21.5\]

3. We must not allow the denominator to be 0.
 \[x + 4 \neq 0 \Rightarrow x \neq -4; \text{ Domain: } \{x | x \neq -4\}\]

4. \[3 - 2x > 5\]
 \[-2x > 2\]
 \[x < -1\]
 Solution set: \(\{x | x < -1\}\) or \((-\infty, -1)\)

5. independent; dependent

6. range

7. \([0, 5]\)
 We need the intersection of the intervals \([0, 7]\) and \([-2, 5]\). That is, domain of \(f \cap \text{domain of } g\).

8. \(\neq; f, g\)

9. \((g - f)(x)\) or \(g(x) - f(x)\)

10. False; every function is a relation, but not every relation is a function. For example, the relation \(x^2 + y^2 = 1\) is not a function.

11. True

12. True

13. False; if the domain is not specified, we assume it is the largest set of real numbers for which the value of \(f\) is a real number.

14. False; the domain of \(f(x) = \frac{x^2 - 4}{x}\) is \(\{x | x \neq 0\}\).

15. Function
 Domain: \{Elvis, Colleen, Kaleigh, Marissa\}
 Range: \{Jan. 8, Mar. 15, Sept. 17\}

16. Not a function

17. Not a function

18. Function
 Domain: \{Less than 9th grade, 9th-12th grade, High School Graduate, Some College, College Graduate\}
 Range: \{$18,120, $23,251, $36,055, $45,810, $67,165\}

19. Not a function

20. Function
 Domain: \{-2, -1, 3, 4\}
 Range: \{3, 5, 7, 12\}

21. Function
 Domain: \{1, 2, 3, 4\}
 Range: \{3\}

22. Function
 Domain: \{0, 1, 2, 3\}
 Range: \{-2, 3, 7\}

23. Not a function

24. Not a function

25. Function
 Domain: \{-2, -1, 0, 1\}
 Range: \{0, 1, 4\}

26. Function
 Domain: \{-2, -1, 0, 1\}
 Range: \{3, 4, 16\}
27. Graph $y = x^2$. The graph passes the vertical line test. Thus, the equation represents a function.

28. Graph $y = x^3$. The graph passes the vertical line test. Thus, the equation represents a function.

29. Graph $y = \frac{1}{x}$. The graph passes the vertical line test. Thus, the equation represents a function.

30. Graph $y = |x|$. The graph passes the vertical line test. Thus, the equation represents a function.

31. $y^2 = 4 - x^2$
 Solve for y: $y = \pm\sqrt{4 - x^2}$
 For $x = 0$, $y = \pm 2$. Thus, $(0, 2)$ and $(0, -2)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.

32. $y = \pm\sqrt{1 - 2x}$
 For $x = 0$, $y = \pm 1$. Thus, $(0, 1)$ and $(0, -1)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.

33. $x = y^2$
 Solve for y: $y = \pm\sqrt{x}$
 For $x = 1$, $y = \pm 1$. Thus, $(1, 1)$ and $(1, -1)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.

34. $x + y^2 = 1$
 Solve for y: $y = \pm\sqrt{1 - x}$
 For $x = 0$, $y = \pm 1$. Thus, $(0, 1)$ and $(0, -1)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.

35. Graph $y = 2x^2 - 3x + 4$. The graph passes the vertical line test. Thus, the equation represents a function.

36. Graph $y = \frac{3x - 1}{x + 2}$. The graph passes the vertical line test. Thus, the equation represents a function.

37. $2x^2 + 3y^2 = 1$
 Solve for y: $2x^2 + 3y^2 = 1$
 $3y^2 = 1 - 2x^2$
 $y^2 = \frac{1 - 2x^2}{3}$
 $y = \pm\sqrt{\frac{1 - 2x^2}{3}}$
 For $x = 0$, $y = \pm\frac{1}{\sqrt{3}}$. Thus, $\left(0, \frac{1}{\sqrt{3}}\right)$ and $\left(0, -\frac{1}{\sqrt{3}}\right)$ are on the graph. This is not a function, since a distinct x-value corresponds to two different y-values.
Chapter 2: Functions and Their Graphs

38. \(x^2 - 4y^2 = 1 \)
 Solve for \(y \): \(x^2 - 4y^2 = 1 \)
 \[4y^2 = x^2 - 1 \]
 \[y^2 = \frac{x^2 - 1}{4} \]
 \[y = \pm \frac{\sqrt{x^2 - 1}}{2} \]
 For \(x = \sqrt{2} \), \(y = \pm \frac{1}{2} \). Thus, \(\left(\sqrt{2}, \frac{1}{2} \right) \) and \(\left(\sqrt{2}, -\frac{1}{2} \right) \) are on the graph. This is not a function, since a distinct \(x \)-value corresponds to two different \(y \)-values.

39. \(f(x) = 3x^2 + 2x - 4 \)
 a. \(f(0) = 3(0)^2 + 2(0) - 4 = -4 \)
 b. \(f(1) = 3(1)^2 + 2(1) - 4 = 3 + 2 - 4 = 1 \)
 c. \(f(-1) = 3(-1)^2 + 2(-1) - 4 = 3 - 2 - 4 = -3 \)
 d. \(f(-x) = 3(-x)^2 + 2(-x) - 4 = 3x^2 - 2x - 4 \)
 e. \(-f(x) = -\left(3x^2 + 2x - 4\right) = -3x^2 - 2x + 4 \)
 f. \(f(x+1) = 3(x+1)^2 + 2(x+1) - 4 \)
 \[= 3\left(x^2 + 2x + 1\right) + 2x + 2 - 4 \]
 \[= 3x^2 + 6x + 3 + 2x + 2 - 4 \]
 \[= 3x^2 + 8x + 1 \]
 g. \(f(2x) = 3(2x)^2 + 2(2x) - 4 = 12x^2 + 4x - 4 \)
 h. \(f(x+h) = 3(x+h)^2 + 2(x+h) - 4 \)
 \[= 3\left(x^2 + 2xh + h^2\right) + 2x + 2h - 4 \]
 \[= 3x^2 + 6xh + 3h^2 + 2x + 2h - 4 \]

40. \(f(x) = -2x^2 + x - 1 \)
 a. \(f(0) = -2(0)^2 + 0 - 1 = -1 \)
 b. \(f(1) = -2(1)^2 + 1 - 1 = -2 \)
 c. \(f(-1) = -2(-1)^2 + (-1) - 1 = -4 \)
 d. \(f(-x) = -2(-x)^2 + (-x) - 1 = -2x^2 - x - 1 \)
 e. \(-f(x) = -\left(-2x^2 + x - 1\right) = 2x^2 - x + 1 \)
 f. \(f(x+1) = -2(x+1)^2 + (x+1) - 1 \)
 \[= -2\left(x^2 + 2x + 1\right) + x + 1 - 1 \]
 \[= -2x^2 - 4x - 2 + x \]
 \[= -2x^2 - 3x - 2 \]
 g. \(f(2x) = -2(2x)^2 + (2x) - 1 = -8x^2 + 2x - 1 \)
 h. \(f(x+h) = -2(x+h)^2 + (x+h) - 1 \)
 \[= -2\left(x^2 + 2xh + h^2\right) + x + h - 1 \]
 \[= -2x^2 - 4x + h - 2 \]

41. \(f(x) = \frac{x}{x^2 + 1} \)
 a. \(f(0) = \frac{0}{0^2 + 1} = \frac{0}{1} = 0 \)
 b. \(f(1) = \frac{1}{1^2 + 1} = \frac{1}{2} \)
 c. \(f(-1) = \frac{-1}{(-1)^2 + 1} = \frac{-1}{2} \)
 d. \(f(-x) = \frac{-x}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} \)
 e. \(-f(x) = -\left(\frac{x}{x^2 + 1}\right) = -\frac{x}{x^2 + 1} \)
 f. \(f(x+1) = \frac{x+1}{(x+1)^2 + 1} \)
 \[= \frac{x+1}{x^2 + 2x + 1 + 1} \]
 \[= \frac{x+1}{x^2 + 2x + 2} \]
 g. \(f(2x) = \frac{2x}{(2x)^2 + 1} = \frac{2x}{4x^2 + 1} \)
 h. \(f(x+h) = \frac{x+h}{(x+h)^2 + 1} = \frac{x+h}{x^2 + 2xh + h^2 + 1} \)
42. \(f(x) = \frac{x^2 - 1}{x+4} \)

a. \(f(0) = \frac{0^2 - 1}{0 + 4} = -\frac{1}{4} = -\frac{1}{4} \)

b. \(f(1) = \frac{1^2 - 1}{1 + 4} = 0 = 0 \)

c. \(f(-1) = \frac{(-1)^2 - 1}{-1 + 4} = \frac{0}{3} = 0 \)

d. \(f(-x) = \frac{(-x)^2 - 1}{-x + 4} = \frac{x^2 - 1}{-x + 4} \)

e. \(-f(x) = -\left(\frac{x^2 - 1}{x + 4}\right) = -\frac{x^2 + 1}{x + 4} \)

f. \(f(x+1) = \frac{(x+1)^2 - 1}{(x+1) + 4} = \frac{x^2 + 2x + 1 - 1}{x + 5} = \frac{x^2 + 2x}{x + 5} \)

g. \(f(2x) = \frac{(2x)^2 - 1}{2x + 4} = \frac{4x^2 - 1}{2x + 4} \)

h. \(f(x+h) = \frac{(x+h)^2 - 1}{(x+h) + 4} = \frac{x^2 + 2xh + h^2 - 1}{x + h + 4} \)

43. \(f(x) = |x| + 4 \)

a. \(f(0) = |0| + 4 = 0 + 4 = 4 \)

b. \(f(1) = |1| + 4 = 1 + 4 = 5 \)

c. \(f(-1) = |-1| + 4 = 1 + 4 = 5 \)

d. \(f(-x) = |-x| + 4 = |x| + 4 \)

e. \(-f(x) = -(|x| + 4) = -|x| - 4 \)

f. \(f(x+1) = |x+1| + 4 \)

g. \(f(2x) = |2x| + 4 = 2|x| + 4 \)

h. \(f(x+h) = |x+h| + 4 \)

44. \(f(x) = \sqrt{x^2 + x} \)

a. \(f(0) = \sqrt{0^2 + 0} = \sqrt{0} = 0 \)

b. \(f(1) = \sqrt{1^2 + 1} = \sqrt{2} \)

c. \(f(-1) = \sqrt{(-1)^2 + (-1)} = \sqrt{1 - 1} = \sqrt{0} = 0 \)

d. \(f(-x) = \sqrt{(-x)^2 + (-x)} = \sqrt{x^2 - x} \)

e. \(-f(x) = -\left(\sqrt{x^2 + x}\right) = -\sqrt{x^2 + x} \)

f. \(f(x+1) = \sqrt{(x+1)^2 + (x+1)} = \sqrt{x^2 + 2x + 1 + x + 1} = \sqrt{x^2 + 3x + 2} \)

g. \(f(2x) = \sqrt{(2x)^2 + 2x} = \sqrt{4x^2 + 2x} \)

h. \(f(x+h) = \sqrt{(x+h)^2 + (x+h)} = \sqrt{x^2 + 2xh + h^2 + x + h} \)

45. \(f(x) = \frac{2x + 1}{3x - 5} \)

a. \(f(0) = \frac{2(0) + 1}{3(0) - 5} = \frac{0 + 1}{0 - 5} = \frac{-1}{5} \)

b. \(f(1) = \frac{2(1) + 1}{3(1) - 5} = \frac{2 + 1}{3 - 5} = \frac{3}{-2} = -\frac{3}{2} \)

c. \(f(-1) = \frac{2(-1) + 1}{3(-1) - 5} = \frac{-2 + 1}{-3 - 5} = \frac{-1}{-8} = \frac{1}{8} \)

d. \(f(-x) = \frac{2(-x) + 1}{3(-x) - 5} = \frac{-2x + 1}{-3x - 5} = \frac{2x - 1}{3x + 5} \)

e. \(-f(x) = -\left(\frac{2x + 1}{3x - 5}\right) = -\frac{2x - 1}{3x - 5} \)

f. \(f(x+1) = \frac{2(x+1) + 1}{3(x+1) - 5} = \frac{2x + 2 + 1}{3x + 3 - 5} = \frac{2x + 3}{3x - 2} \)

g. \(f(2x) = \frac{2(2x) + 1}{3(2x) - 5} = \frac{4x + 1}{6x - 5} \)

h. \(f(x+h) = \frac{2(x+h) + 1}{3(x+h) - 5} = \frac{2x + 2h + 1}{3x + 3h - 5} \)
46. \(f(x) = 1 - \frac{1}{(x+2)^2} \)
 a. \(f(0) = 1 - \frac{1}{(0+2)^2} = 1 - \frac{1}{4} = \frac{3}{4} \)
 b. \(f(1) = 1 - \frac{1}{(1+2)^2} = 1 - \frac{1}{9} = \frac{8}{9} \)
 c. \(f(-1) = 1 - \frac{1}{(-1+2)^2} = 1 - \frac{1}{1} = 0 \)
 d. \(f(-x) = 1 - \frac{1}{((-x)+2)^2} = 1 - \frac{1}{(2-x)^2} \)
 e. \(-f(x) = -\left(1 - \frac{1}{(x+2)^2}\right) = \frac{1}{(x+2)^2} - 1 \)
 f. \(f(x+1) = 1 - \frac{1}{((x+1)+2)^2} = 1 - \frac{1}{(x+3)^2} \)
 g. \(f(2x) = 1 - \frac{1}{(2x+2)^2} = 1 - \frac{1}{4(x+1)^2} \)
 h. \(f(x+h) = 1 - \frac{1}{(x+h+2)^2} \)

47. \(f(x) = -5x + 4 \)
 Domain: \(\{x | x \text{ is any real number}\} \)

48. \(f(x) = x^2 + 2 \)
 Domain: \(\{x | x \text{ is any real number}\} \)

49. \(f(x) = \frac{x}{x^2 + 1} \)
 Domain: \(\{x | x \text{ is any real number}\} \)

50. \(f(x) = \frac{x^2}{x^2 + 1} \)
 Domain: \(\{x | x \text{ is any real number}\} \)

51. \(g(x) = \frac{x}{x^2 - 16} \)
 \(x^2 - 16 \neq 0 \)
 \(x^2 - 16 \Rightarrow x \neq \pm 4 \)
 Domain: \(\{x | x \neq -4, x \neq 4\} \)

52. \(h(x) = \frac{2x}{x^2 - 4} \)
 \(x^2 - 4 \neq 0 \)
 \(x^2 - 4 \Rightarrow x \neq \pm 2 \)
 Domain: \(\{x | x \neq -2, x \neq 2\} \)

53. \(F(x) = \frac{x^2}{x^3 + x} \)
 \(x^3 + x \neq 0 \)
 \(x(x^2 + 1) \neq 0 \)
 \(x \neq 0, x^2 \neq -1 \)
 Domain: \(\{x | x \neq 0\} \)

54. \(G(x) = \frac{x + 4}{x^3 - 4x} \)
 \(x^3 - 4x \neq 0 \)
 \(x(x^2 - 4) \neq 0 \)
 \(x \neq 0, x^2 \neq 4 \)
 \(x \neq 0, x \neq \pm 2 \)
 Domain: \(\{x | x \neq -2, x \neq 0, x \neq 2\} \)

55. \(h(x) = \sqrt{3x - 12} \)
 \(3x - 12 \geq 0 \)
 \(3x \geq 12 \)
 \(x \geq 4 \)
 Domain: \(\{x | x \geq 4\} \)

56. \(G(x) = \sqrt{1 - x} \)
 \(1 - x \geq 0 \)
 \(-x \geq -1 \)
 \(x \leq 1 \)
 Domain: \(\{x | x \leq 1\} \)

57. \(f(x) = \frac{4}{\sqrt{x - 9}} \)
 \(x - 9 > 0 \)
 \(x > 9 \)
 Domain: \(\{x | x > 9\} \)
58. \(f(x) = \frac{x}{\sqrt{x-4}} \)

\(x - 4 > 0 \)
\(x > 4 \)
Domain: \(\{ x \mid x > 4 \} \)

59. \(p(x) = \frac{-2}{\sqrt{x-1}} = \frac{\sqrt{2}}{\sqrt{x-1}} \)

\(x - 1 > 0 \)
\(x > 1 \)
Domain: \(\{ x \mid x > 1 \} \)

60. \(q(x) = \sqrt{-x-2} \)

\(-x - 2 \geq 0 \)
\(-x \geq 2 \)
\(x \leq -2 \)
Domain: \(\{ x \mid x \leq -2 \} \)

61. \(P(t) = \frac{\sqrt{t-4}}{3t-21} \)

\(t - 4 \geq 0 \)
\(t \geq 4 \)
Also \(3t - 21 \neq 0 \)
\(3t - 21 \neq 0 \)
\(3t \neq 21 \)
\(t \neq 7 \)
Domain: \(\{ t \mid t \geq 4, t \neq 7 \} \)

62. \(h(z) = \frac{\sqrt{z+3}}{z-2} \)

\(z + 3 \geq 0 \)
\(z \geq -3 \)
Also \(z - 2 \neq 0 \)
\(z \neq 2 \)
Domain: \(\{ z \mid z \geq -3, z \neq 2 \} \)

63. \(f(x) = 3x + 4 \quad g(x) = 2x - 3 \)

a. \((f + g)(x) = 3x + 4 + 2x - 3 = 5x + 1 \)
Domain: \(\{ x \mid x \text{ is any real number} \} \).

b. \((f - g)(x) = (3x + 4) - (2x - 3) \)
\(= 3x + 4 - 2x + 3 \)
\(= x + 7 \)
Domain: \(\{ x \mid x \text{ is any real number} \} \).

c. \((f \cdot g)(x) = (3x + 4)(2x - 3) \)
\(= 6x^2 - 9x + 8x - 12 \)
\(= 6x^2 - x - 12 \)
Domain: \(\{ x \mid x \text{ is any real number} \} \).

d. \(\left(\frac{f}{g} \right)(x) = \frac{3x + 4}{2x - 3} \)
\(2x - 3 \neq 0 \Rightarrow 2x - 3 \Rightarrow x \neq \frac{3}{2} \)
Domain: \(\{ x \mid x \neq \frac{3}{2} \} \).

e. \((f + g)(3) = 5(3) + 1 = 15 + 1 = 16 \)
f. \((f - g)(4) = 4 + 7 = 11 \)
g. \((f \cdot g)(2) = 6(2)^2 - 2 - 12 = 24 - 2 - 12 = 10 \)
h. \(\left(\frac{f}{g} \right)(1) = \frac{3(1) + 4}{2(1) - 3} = \frac{3 + 4}{2 - 3} = \frac{7}{-1} = -7 \)

64. \(f(x) = 2x + 1 \quad g(x) = 3x - 2 \)

a. \((f + g)(x) = 2x + 1 + 3x - 2 = 5x - 1 \)
Domain: \(\{ x \mid x \text{ is any real number} \} \).

b. \((f - g)(x) = (2x + 1) - (3x - 2) \)
\(= 2x + 1 - 3x + 2 \)
\(= -x + 3 \)
Domain: \(\{ x \mid x \text{ is any real number} \} \).

c. \((f \cdot g)(x) = (2x + 1)(3x - 2) \)
\(= 6x^2 - 4x + 3x - 2 \)
\(= 6x^2 - x - 2 \)
Domain: \(\{ x \mid x \text{ is any real number} \} \).

d. \(\left(\frac{f}{g} \right)(x) = \frac{2x + 1}{3x - 2} \)
\(3x - 2 \neq 0 \Rightarrow 3x \neq \frac{2}{3} \)
Domain: \(\{ x \mid x \neq \frac{2}{3} \} \).
Chapter 2: Functions and Their Graphs

65. \(f(x) = x - 1 \quad g(x) = 2x^2 \)

a. \((f + g)(x) = x - 1 + 2x^2 = 2x^2 + x - 1 \)
 Domain: \(\{ x | x \text{ is any real number} \} \).

b. \((f - g)(x) = (x - 1) - (2x^2) \)
 \(= x - 1 - 2x^2 \)
 \(= -2x^2 + x - 1 \)
 Domain: \(\{ x | x \text{ is any real number} \} \).

c. \((f \cdot g)(x) = (x - 1)(2x^2) = 2x^3 - 2x^2 \)
 Domain: \(\{ x | x \text{ is any real number} \} \).

d. \(\left(\frac{f}{g} \right)(x) = \frac{x - 1}{2x^2} \)
 Domain: \(\{ x | x \neq 0 \} \).

e. \((f + g)(3) = 2(3)^2 + 3 - 1 \)
 \(= 2(9) + 3 - 1 \)
 \(= 18 + 3 - 1 = 20 \)

f. \((f - g)(4) = -2(4)^2 + 4 - 1 \)
 \(= -2(16) + 4 - 1 \)
 \(= -32 + 4 - 1 = -29 \)

g. \((f \cdot g)(2) = 2(2)^3 - 2(2)^2 \)
 \(= 2(8) - 2(4) \)
 \(= 16 - 8 = 8 \)

h. \(\left(\frac{f}{g} \right)(1) = \frac{1 - 1}{2(1)^2} = \frac{0}{2} = 0 \)

66. \(f(x) = 2x^2 + 3 \quad g(x) = 4x^3 + 1 \)

a. \((f + g)(x) = 2x^2 + 3 + 4x^3 + 1 \)
 \(= 4x^3 + 2x^2 + 4 \)
 Domain: \(\{ x | x \text{ is any real number} \} \).

b. \((f - g)(x) = \left(2x^2 + 3 \right) - \left(4x^3 + 1 \right) \)
 \(= 2x^2 + 3 - 4x^3 - 1 \)
 \(= -4x^3 + 2x^2 + 2 \)
 Domain: \(\{ x | x \text{ is any real number} \} \).

c. \((f \cdot g)(x) = \left(2x^2 + 3 \right) \left(4x^3 + 1 \right) \)
 \(= 8x^5 + 12x^3 + 2x^2 + 3 \)
 Domain: \(\{ x | x \text{ is any real number} \} \).

d. \(\left(\frac{f}{g} \right)(x) = \frac{2x^2 + 3}{4x^3 + 1} \)
 \(4x^3 + 1 \neq 0 \)
 \(4x^3 \neq -1 \)
 \(x^3 \neq -\frac{1}{4} \Rightarrow x \neq \sqrt[3]{\frac{-1}{4}} = -\frac{\sqrt[3]{2}}{2} \)
 Domain: \(\left\{ x \mid x \neq -\frac{\sqrt[3]{2}}{2} \right\} \).

e. \((f + g)(3) = 4(3)^3 + 2(3)^2 + 4 \)
 \(= 4(27) + 2(9) + 4 \)
 \(= 108 + 18 + 4 = 130 \)

f. \((f - g)(4) = -4(4)^3 + 2(4)^2 + 2 \)
 \(= -4(64) + 2(16) + 2 \)
 \(= -256 + 32 + 2 = -222 \)

g. \((f \cdot g)(2) = 8(2)^3 + 12(2)^3 + 2(2)^2 + 3 \)
 \(= 8(32) + 12(8) + 2(4) + 3 \)
 \(= 256 + 96 + 8 + 3 = 363 \)

h. \(\left(\frac{f}{g} \right)(1) = \frac{2(1)^2 + 3}{4(1)^3 + 1} = \frac{2(1) + 3}{4(1) + 1} = \frac{2 + 3}{4 + 1} = \frac{5}{5} = 1 \)

67. \(f(x) = \sqrt{x} \quad g(x) = 3x - 5 \)

a. \((f + g)(x) = \sqrt{x} + 3x - 5 \)
 Domain: \(\{ x | x \geq 0 \} \).
Section 2.1: Functions

b. \((f-g)(x) = \sqrt{x} - (3x - 5) = \sqrt{x} - 3x + 5\)
 Domain: \(\{x \mid x \geq 0\}\).

c. \((f \cdot g)(x) = \sqrt{x}(3x - 5) = 3x\sqrt{x} - 5\sqrt{x}\)
 Domain: \(\{x \mid x \geq 0\}\).

d. \(\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x}}{3x - 5}\)
 \(x \geq 0\) and \(3x - 5 \neq 0\)
 \(3x - 5 \Rightarrow x \neq \frac{5}{3}\)
 Domain: \(\{x \mid x \geq 0 \text{ and } x \neq \frac{5}{3}\}\).

e. \((f + g)(3) = \sqrt{3} + 3(3) - 5 = \sqrt{3} + 9 - 5 = \sqrt{3} + 4\)

f. \((f - g)(4) = \sqrt{4} - 3(4) + 5 = 2 - 12 + 5 = -5\)

g. \((f \cdot g)(2) = 3(2)\sqrt{2} - 5\sqrt{2} = 6\sqrt{2} - 5\sqrt{2} = \sqrt{2}\)

h. \(\left(\frac{f}{g}\right)(1) = \frac{\sqrt{1}}{3(1) - 5} = \frac{1}{3 - 5} = \frac{1}{-2} = -\frac{1}{2}\)

68. \(f(x) = |x|\)
 \(g(x) = x\)
 a. \((f + g)(x) = |x| + x\)
 Domain: \(\{x \mid x \text{ is any real number}\}\).
 b. \((f - g)(x) = |x| - x\)
 Domain: \(\{x \mid x \text{ is any real number}\}\).
 c. \((f \cdot g)(x) = |x| \cdot x = x|x|\)
 Domain: \(\{x \mid x \text{ is any real number}\}\).
 d. \(\left(\frac{f}{g}\right)(x) = \frac{|x|}{x}\)
 Domain: \(\{x \mid x \neq 0\}\).
 e. \((f + g)(3) = |3| + 3 = 3 + 3 = 6\)
 f. \((f - g)(4) = |4| - 4 = 4 - 4 = 0\)
 g. \((f \cdot g)(2) = 2|2| = 2 \cdot 2 = 4\)

69. \(f(x) = 1 + \frac{1}{x}\)
 \(g(x) = \frac{1}{x}\)
 a. \((f + g)(x) = 1 + \frac{1}{x} + \frac{1}{x} = 1 + \frac{2}{x}\)
 Domain: \(\{x \mid x \neq 0\}\).
 b. \((f - g)(x) = 1 + \frac{1}{x} - \frac{1}{x} = 1\)
 Domain: \(\{x \mid x \neq 0\}\).
 c. \((f \cdot g)(x) = \left(1 + \frac{1}{x}\right)\frac{1}{x} = \frac{1 + \frac{1}{x}}{x}\)
 Domain: \(\{x \mid x \neq 0\}\).
 d. \(\left(\frac{f}{g}\right)(x) = \frac{1 + \frac{1}{x}}{x} = \frac{x + 1}{x} = \frac{x + 1}{x} = x + 1\)
 Domain: \(\{x \mid x \neq 0\}\).
 e. \((f + g)(3) = 1 + \frac{2}{3} = \frac{5}{3}\)
 f. \((f - g)(4) = 1\)
 g. \((f \cdot g)(2) = \frac{1}{2} + \frac{1}{(2)^2} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}\)
 h. \(\left(\frac{f}{g}\right)(1) = 1 + 1 = 2\)

70. \(f(x) = \sqrt{x-1}\)
 \(g(x) = \sqrt{4-x}\)
 a. \((f + g)(x) = \sqrt{x-1} + \sqrt{4-x}\)
 \(x-1 \geq 0\) and \(4-x \geq 0\)
 \(x \geq 1\) and \(-x \geq -4\)
 \(x \leq 4\)
 Domain: \(\{x \mid 1 \leq x \leq 4\}\).
 b. \((f - g)(x) = \sqrt{x-1} - \sqrt{4-x}\)
 \(x-1 \geq 0\) and \(4-x \geq 0\)
 \(x \geq 1\) and \(-x \geq -4\)
 \(x \leq 4\)
 Domain: \(\{x \mid 1 \leq x \leq 4\}\).

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
Chapter 2: Functions and Their Graphs

c. \((f \cdot g)(x) = (\sqrt{x-1})(4-x)\)
\[= \sqrt{x^2 + 5x - 4}\]
x - 1 \geq 0 \quad \text{and} \quad 4 - x \geq 0
x \geq 1 \quad \text{and} \quad -x \geq -4
\quad x \leq 4
\text{Domain: } \{x \mid 1 \leq x \leq 4\}.

d. \((f / g)(x) = \sqrt{x-1} / \sqrt{4-x}\)
x - 1 \geq 0 \quad \text{and} \quad 4 - x > 0
x \geq 1 \quad \text{and} \quad -x > -4
x > 4
\text{Domain: } \{x \mid 1 < x < 4\}.

e. \((f + g)(3) = \sqrt{3-1} + \sqrt{4-3}\)
\[= 2 + 1 = \sqrt{2} + \sqrt{1}\]
f. \((f - g)(4) = \sqrt{4-1} - \sqrt{4-4}\)
\[= \sqrt{3} - \sqrt{0} = \sqrt{3} - 0 = \sqrt{3}\]
g. \((f \cdot g)(2) = \sqrt{(2)^2 + 5(2) - 4}\)
\[= \sqrt{4 + 10 - 4} = \sqrt{2}\]
h. \((f / g)(1) = \sqrt{1-1} / \sqrt{3-1} = \sqrt{0} / \sqrt{1} = 0\)

71. \(f(x) = \frac{2x + 3}{3x - 2}\) \(g(x) = \frac{4x}{3x - 2}\)
a. \((f + g)(x) = \frac{2x + 3 + 4x}{3x - 2} + \frac{4x}{3x - 2}\)
\[= \frac{2x + 3 + 4x}{3x - 2} = \frac{6x + 3}{3x - 2}\]
3x - 2 \neq 0
3x - 2 \Rightarrow x \neq \frac{2}{3}
\text{Domain: } \{x \mid x \neq \frac{2}{3}\}.

b. \((f - g)(x) = \frac{2x + 3}{3x - 2} - \frac{4x}{3x - 2}\)
\[= \frac{2x + 3 - 4x}{3x - 2} = \frac{-2x + 3}{3x - 2}\]
3x - 2 \neq 0
3x - 2 \Rightarrow x \neq \frac{2}{3}
\text{Domain: } \{x \mid x \neq \frac{2}{3}\}.

c. \((f \cdot g)(x) = \frac{2x + 3}{3x - 2} \cdot \frac{4x}{3x - 2}\)
\[= \frac{8x^2 + 12x}{(3x - 2)^2}\]
3x - 2 \neq 0
3x - 2 \Rightarrow x \neq \frac{2}{3}
\text{Domain: } \{x \mid x \neq \frac{2}{3}\}.

d. \((f / g)(x) = \frac{2x + 3}{3x - 2} / \frac{4x}{3x - 2}\)
\[= \frac{2x + 3}{4x} = \frac{3x - 2}{4x}\]
3x - 2 \neq 0
3x - 2 \Rightarrow x \neq \frac{2}{3}
\text{Domain: } \{x \mid x \neq \frac{2}{3}\}.

e. \((f + g)(3) = \frac{6x + 3}{3x - 2} = \frac{18 + 3}{9 - 2} = \frac{21}{7} = 3\)
f. \((f - g)(4) = \frac{-2x + 3}{3x - 2} - \frac{-8 + 3}{12 - 2} = \frac{-5}{10} = \frac{1}{2}\)
g. \((f \cdot g)(2) = \frac{8x^2 + 12x}{(3x - 2)^2}\)
\[= \frac{8(4) + 24}{(6 - 2)^2} = \frac{32 + 24}{16} = \frac{56}{16} = \frac{7}{2}\]
h. \((f / g)(1) = \frac{2x + 3}{4x} = \frac{2 + 3}{4} = \frac{5}{4}\)
72. \(f(x) = \sqrt{x+1} \quad g(x) = \frac{2}{x} \)

a. \((f + g)(x) = \sqrt{x+1} + \frac{2}{x} \)
\(x + 1 \geq 0 \quad \text{and} \quad x \neq 0 \)
\(x \geq -1 \)
Domain: \(\{x \mid x \geq -1, \text{and} x \neq 0\}\).

b. \((f - g)(x) = \sqrt{x+1} - \frac{2}{x} \)
\(x + 1 \geq 0 \quad \text{and} \quad x \neq 0 \)
\(x \geq -1 \)
Domain: \(\{x \mid x \geq -1, \text{and} x \neq 0\}\).

c. \((f \cdot g)(x) = \sqrt{x+1} \cdot \frac{2}{x} = \frac{2\sqrt{x+1}}{x} \)
\(x + 1 \geq 0 \quad \text{and} \quad x \neq 0 \)
\(x \geq -1 \)
Domain: \(\{x \mid x \geq -1, \text{and} x \neq 0\}\).

d. \(\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x+1}}{2} \)
\(x + 1 \geq 0 \quad \text{and} \quad x \neq 0 \)
\(x \geq -1 \)
Domain: \(\{x \mid x \geq -1, \text{and} x \neq 0\}\).

e. \((f + g)(3) = \sqrt{3+1} + \frac{2}{3} = \sqrt{4} + \frac{2}{3} = 2 + \frac{2}{3} = \frac{8}{3} \)

f. \((f - g)(4) = \sqrt{4+1} - \frac{2}{4} = \sqrt{5} - \frac{1}{2} \)

g. \((f \cdot g)(2) = \frac{2\sqrt{2+1}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3} \)

h. \(\left(\frac{f}{g}\right)(1) = \frac{1\sqrt{1+1}}{2} = \frac{\sqrt{2}}{2} \)

73. \(f(x) = 3x + 1 \quad (f + g)(x) = 6 - \frac{1}{2}x \)
\(6 - \frac{1}{2}x = 3x + 1 + g(x) \)
\(5 - \frac{7}{2}x = g(x) \)
\(g(x) = 5 - \frac{7}{2}x \)

74. \(f(x) = \frac{1}{x} \quad \left(\frac{f}{g}\right)(x) = \frac{x+1}{x^2 - x} \)
\(\frac{x+1}{x^2 - x} = \frac{1}{x} \quad \frac{1}{x} \cdot \frac{x^2 - x}{x+1} \)

75. \(f(x) = 4x + 3 \)
\(\frac{f(x+h) - f(x)}{h} = \frac{4(x+h) + 3 - (4x + 3)}{h} = \frac{4x + 4h + 3 - 4x - 3}{h} = \frac{4h}{h} = 4 \)

76. \(f(x) = -3x + 1 \)
\(\frac{f(x+h) - f(x)}{h} = \frac{-3(x+h) + 1 - (-3x + 1)}{h} = \frac{-3x - 3h + 1 + 3x - 1}{h} = \frac{-3h}{h} = -3 \)

77. \(f(x) = x^2 - x + 4 \)
\(\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^2 - (x+h) + 4 - (x^2 - x + 4)}{h} = \frac{x^2 + 2xh + h^2 - x - h + 4 - x^2 + x - 4}{h} = \frac{2xh + h^2 - h}{h} = 2x + h - 1 \)
Chapter 2: Functions and Their Graphs

78. \(f(x) = 3x^2 - 2x + 6 \)
\[
\frac{f(x+h) - f(x)}{h} = \frac{3(x+h)^2 - 2(x+h) + 6 - [3x^2 - 2x + 6]}{h}
\]
\[
= \frac{3(x^2 + 2xh + h^2) - 2x - 2h + 6 - 3x^2 + 2x - 6}{h}
\]
\[
= \frac{3x^2 + 6xh + 3h^2 - 2h - 3x^2}{h}
\]
\[
= 6x + 3h - 2
\]

79. \(f(x) = \frac{1}{x^2} \)
\[
\frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}
\]
\[
= \frac{x^2 - (x+h)^2}{x^2(x+h)^2}
\]
\[
= \frac{x - (x^2 + 2xh + h^2)}{x^2(x+h)^2}
\]
\[
= \frac{1}{h} \cdot \frac{-2x - h}{x^2(x+h)^2}
\]
\[
= \frac{-2x - h}{x^2(x+h)^2} = \frac{-2x + h}{x^2(x+h)^2}
\]

80. \(f(x) = \frac{1}{x+3} \)
\[
\frac{f(x+h) - f(x)}{h} = \frac{\frac{1}{x+h+3} - \frac{1}{x+3}}{h}
\]
\[
= \frac{x+3 - (x+3+h)}{(x+h+3)(x+3)}
\]
\[
= \frac{h}{(x+h+3)(x+3)}
\]
\[
= \frac{-h}{(x+h+3)(x+3)}
\]
\[
= \frac{-1}{(x+h+3)(x+3)}
\]

81. \(f(x) = \sqrt{x} \)
\[
\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h}
\]
\[
= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}
\]
\[
= \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})}
\]
\[
= \frac{1}{\sqrt{x+h} + \sqrt{x}}
\]

82. \(f(x) = \sqrt{x+1} \)
\[
\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h}
\]
\[
= \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} \cdot \frac{\sqrt{x+h+1} + \sqrt{x+1}}{\sqrt{x+h+1} + \sqrt{x+1}}
\]
\[
= \frac{x+h+1 - (x+1)}{h(\sqrt{x+h+1} + \sqrt{x+1})}
\]
\[
= \frac{1}{\sqrt{x+h+1} + \sqrt{x+1}}
\]
83. \(f(x) = 2x^3 + Ax^2 + 4x - 5 \) and \(f(2) = 5 \)
\[
\begin{align*}
f(2) &= 2(2)^3 + A(2)^2 + 4(2) - 5 \\
5 &= 16 + 4A + 8 - 5 \\
5 &= 4A + 9 \\
-14 &= 4A \\
A &= -\frac{14}{4} = -\frac{7}{2}
\end{align*}
\]

84. \(f(x) = 3x^2 - Bx + 4 \) and \(f(-1) = 12 \):
\[
\begin{align*}
f(-1) &= 3(-1)^2 - B(-1) + 4 \\
12 &= 3 + B + 4 \\
B &= 5
\end{align*}
\]

85. \(f(x) = \frac{3x + 8}{2x - A} \) and \(f(0) = 2 \)
\[
\begin{align*}
f(0) &= \frac{3(0) + 8}{2(0) - A} \\
2 &= \frac{8}{-A} \\
-2A &= 8 \\
A &= -4
\end{align*}
\]

86. \(f(x) = \frac{2x - B}{3x + 4} \) and \(f(2) = \frac{1}{2} \)
\[
\begin{align*}
f(2) &= \frac{2(2) - B}{3(2) + 4} \\
\frac{1}{2} &= \frac{4 - B}{10} \\
5 &= 4 - B \\
B &= -1
\end{align*}
\]

87. \(f(x) = \frac{2x - A}{x - 3} \) and \(f(4) = 0 \)
\[
\begin{align*}
f(4) &= \frac{2(4) - A}{4 - 3} \\
0 &= \frac{8 - A}{1} \\
0 &= 8 - A \\
A &= 8 \\
f \text{ is undefined when } x = 3 \text{.}
\end{align*}
\]

88. \(f(x) = \frac{x-B}{x-A} \), \(f(2) = 0 \) and \(f(1) \) is undefined
\[
1 - A = 0 \quad \Rightarrow \quad A = 1
\]
\[
\begin{align*}
f(2) &= \frac{2-B}{2-1} \\
0 &= \frac{2-B}{1} \\
0 &= 2 - B \\
B &= 2
\end{align*}
\]

89. Let \(x \) represent the length of the rectangle.
Then, \(\frac{x}{2} \) represents the width of the rectangle since the length is twice the width. The function for the area is:
\[
A(x) = \frac{1}{2} \cdot x \cdot x = \frac{1}{2} x^2
\]

90. Let \(x \) represent the length of one of the two equal sides. The function for the area is:
\[
A(x) = \frac{1}{2} \cdot x \cdot x = \frac{1}{2} x^2
\]

91. Let \(x \) represent the number of hours worked.
The function for the gross salary is:
\[
G(x) = 10x
\]

92. Let \(x \) represent the number of items sold.
The function for the gross salary is:
\[
G(x) = 10x + 100
\]

93. a. \(P \) is the dependent variable; \(a \) is the independent variable
b. \(P(20) = 0.015(20)^2 - 4.962(20) + 290.580 \)
\[
= 6 - 99.24 + 290.580 \\
= 197.34
\]
In 2005 there are 197.34 million people who are 20 years of age or older.
c. \(P(0) = 0.015(0)^2 - 4.962(0) + 290.580 \)
\[
= 290.580
\]
In 2005 there are 290.580 million people.

94. a. \(N \) is the dependent variable; \(r \) is the independent variable
b. \(N(3) = -1.44(3)^2 + 14.52(3) - 14.96 \)
\[
= -12.96 + 43.56 - 14.96 \\
= 15.64
\]
In 2005, there are 15.64 million housing units with 3 rooms.
95. a. \(H(1) = 20 - 4.9(1)^2 \)
 \[= 20 - 4.9 = 15.1 \text{ meters} \]
 \(H(1.1) = 20 - 4.9(1.1)^2 \)
 \[= 20 - 4.9(1.21) \]
 \[= 20 - 5.929 = 14.071 \text{ meters} \]
 \(H(1.2) = 20 - 4.9(1.2)^2 \)
 \[= 20 - 4.9(1.44) \]
 \[= 20 - 7.056 = 12.944 \text{ meters} \]
 \(H(1.3) = 20 - 4.9(1.3)^2 \)
 \[= 20 - 4.9(1.69) \]
 \[= 20 - 8.281 = 11.719 \text{ meters} \]

b. \(H(x) = 15 \):
 \[15 = 20 - 4.9x^2 \]
 \[-5 = -4.9x^2 \]
 \[x^2 = 1.0204 \]
 \[x = 1.01 \text{ seconds} \]

 \(H(x) = 10 \):
 \[10 = 20 - 4.9x^2 \]
 \[-10 = -4.9x^2 \]
 \[x^2 = 2.0408 \]
 \[x = 1.43 \text{ seconds} \]

 \(H(x) = 5 \):
 \[5 = 20 - 4.9x^2 \]
 \[-15 = -4.9x^2 \]
 \[x^2 = 3.0612 \]
 \[x = 1.75 \text{ seconds} \]

c. \(H(x) = 0 \)
 \[0 = 20 - 4.9x^2 \]
 \[-20 = -4.9x^2 \]
 \[x^2 = 4.0816 \]
 \[x = 2.02 \text{ seconds} \]

b. \(H(x) = 15 \)
 \[15 = 20 - 13x^2 \]
 \[-5 = -13x^2 \]
 \[x^2 = 0.3846 \]
 \[x = 0.62 \text{ seconds} \]

 \(H(x) = 10 \)
 \[10 = 20 - 13x^2 \]
 \[-10 = -13x^2 \]
 \[x^2 = 0.7692 \]
 \[x = 0.88 \text{ seconds} \]

 \(H(x) = 5 \)
 \[5 = 20 - 13x^2 \]
 \[-15 = -13x^2 \]
 \[x^2 = 1.1538 \]
 \[x = 1.07 \text{ seconds} \]

c. \(H(x) = 0 \)
 \[0 = 20 - 13x^2 \]
 \[-20 = -13x^2 \]
 \[x^2 = 1.5385 \]
 \[x = 1.24 \text{ seconds} \]

97. \(C(x) = 100 + \frac{x}{10} + \frac{36,000}{x} \)

a. \(C(500) = 100 + \frac{500}{10} + \frac{36,000}{500} \)
 \[= 100 + 50 + 72 \]
 \[= 172 \]

b. \(C(450) = 100 + \frac{450}{10} + \frac{36,000}{450} \)
 \[= 100 + 45 + 80 \]
 \[= 225 \]

c. \(C(600) = 100 + \frac{600}{10} + \frac{36,000}{600} \)
 \[= 100 + 60 + 60 \]
 \[= 220 \]

d. \(C(400) = 100 + \frac{400}{10} + \frac{36,000}{400} \)
 \[= 100 + 40 + 90 \]
 \[= 230 \]
Section 2.1: Functions

98. \(A(x) = 4x\sqrt{1-x^2} \)

a. \(A\left(\frac{1}{3}\right) = 4 \cdot \frac{1}{3} \sqrt{1- \left(\frac{1}{3}\right)^2} = \frac{2}{3} \cdot \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3} \)
 \[= \frac{8\sqrt{2}}{9} = 1.26 \text{ ft}^2\]

b. \(A\left(\frac{1}{2}\right) = 4 \cdot \frac{1}{2} \sqrt{1- \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{4} \cdot 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} = 1.73 \text{ ft}^2\)

c. \(A\left(\frac{2}{3}\right) = 4 \cdot \frac{2}{3} \sqrt{1- \left(\frac{2}{3}\right)^2} = \frac{8\sqrt{5}}{3} = \frac{2\sqrt{5}}{3} \)
 \[= \frac{8\sqrt{5}}{9} = 1.99 \text{ ft}^2\]

99. \(R(x) = \left(\frac{L}{P}\right)(x) = \frac{L(x)}{P(x)} \)

100. \(T(x) = (V + P)(x) = V(x) + P(x) \)

101. \(H(x) = (P \cdot I)(x) = P(x) \cdot I(x) \)

102. \(N(x) = (I - T)(x) = I(x) - T(x) \)

103. a. \(P(x) = R(x) - C(x) \)
 \[= (-1.2x^2 + 220x) - (0.05x^3 - 2x^2 + 65x + 500) \]
 \[= -0.05x^3 + 0.8x^2 + 155x - 500 \]

b. \(P(15) = -0.05(15)^3 + 0.8(15)^2 + 155(15) - 500 \)
 \[= -168.75 + 180 + 2325 - 500 \]
 \[= 1836.25 \]

c. When 15 hundred cell phones are sold, the profit is $1836.25.

104. a. \(P(x) = R(x) - C(x) \)
 \[= 30x - (0.1x^2 + 7x + 400) \]
 \[= 30x - 0.1x^2 - 7x - 400 \]
 \[= -0.1x^2 + 23x - 400 \]

b. \(P(30) = -0.1(30)^2 + 23(30) - 400 \)
 \[= -90 + 690 - 400 \]
 \[= 200 \]

c. When 30 clocks are sold, the profit is $200.

105. a. \(h(x) = 2x \)
 \[h(a + b) = 2(a + b) = 2a + 2b \]
 \[h(a) + h(b) = h(a + b) \]
 \[h(x) = 2x \text{ has the property.} \]

b. \(g(x) = x^2 \)
 \[g(a + b) = (a + b)^2 = a^2 + 2ab + b^2 \]
 Since \(a^2 + 2ab + b^2 \neq a^2 + b^2 = g(a) + g(b), \)
 \[g(x) = x^2 \text{ does not have the property.} \]

c. \(F(x) = 5x - 2 \)
 \[F(a + b) = 5(a + b) - 2 = 5a + 5b - 2 \]
 Since \(5a + 5b - 2 \neq 5a - 2 + 5b - 2 = F(a) + F(b), \)
 \[F(x) = 5x - 2 \text{ does not have the property.} \]

d. \(G(x) = \frac{1}{x} \)
 \[G(a + b) = \frac{1}{a + b} \neq \frac{1}{a} + \frac{1}{b} = G(a) + G(b) \]
 \[G(x) = \frac{1}{x} \text{ does not have the property.} \]

106. No. The domain of \(f \) is \(\{x | x \text{ is any real number}\} \),
 but the domain of \(g \) is \(\{x | x \neq -1\} \).

107. Answers will vary.

108. \(\frac{3x - x^3}{(your \ age)} \)
Section 2.2

1. \[x^2 + 4y^2 = 16 \]
 - x-intercepts:
 \[
 x^2 + 4(0)^2 = 16 \\
 x^2 = 16 \\
 x = \pm 4 \Rightarrow (-4,0),(4,0)
 \]
 - y-intercepts:
 \[
 (0)^2 + 4y^2 = 16 \\
 4y^2 = 16 \\
 y^2 = 4 \\
 y = \pm 2 \Rightarrow (0,-2),(0,2)
 \]

2. False; \(x = 2y - 2 \)
 - \(-2 = 2y - 2\)
 - \(0 = 2y\)
 - \(0 = y\)
 The point \((-2,0)\) is on the graph.

3. Vertical

4. \(f(5) = -3 \)

5. \(f(x) = ax^2 + 4 \)
 - \(a(-1)^2 + 4 = 2 \Rightarrow a = -2\)

6. False; it would fail the vertical line test.

7. False; e.g. \(y = \frac{1}{x} \).

8. True

9. a. \(f(0) = 3 \) since \((0,3)\) is on the graph.
 - \(f(-6) = -3 \) since \((-6,-3)\) is on the graph.
 b. \(f(6) = 0 \) since \((6,0)\) is on the graph.
 - \(f(11) = 1 \) since \((11,1)\) is on the graph.
 c. \(f(3) \) is positive since \(f(3) = 3.7 \).
 d. \(f(-4) \) is negative since \(f(-4) = -1 \).
 e. \(f(x) = 0 \) when \(x = -3, x = 6, \ and\ x = 10. \)
 f. \(f(x) > 0 \) when \(-3 < x < 6, \ and\ 10 < x \leq 11. \)

10. a. \(f(0) = 0 \) since \((0,0)\) is on the graph.
 - \(f(6) = 0 \) since \((6,0)\) is on the graph.
 b. \(f(2) = -2 \) since \((2,-2)\) is on the graph.
 - \(f(-2) = 1 \) since \((-2,1)\) is on the graph.
 c. \(f(3) \) is negative since \(f(3) = -1 \).
 d. \(f(-1) \) is positive since \(f(-1) = 1.0 \).
 e. \(f(x) = 0 \) when \(x = 0, x = 4, \ and\ x = 6. \)
 f. \(f(x) < 0 \) when \(0 < x < 4. \)
 g. The domain of \(f \) is \(\{ x \mid -6 \leq x \leq 11 \} \) or \([-6,11].\)
 h. The range of \(f \) is \(\{ y \mid -3 \leq y \leq 4 \} \) or \([-3,4].\)
 i. The x-intercepts are \(-3, 6, \ and\ 10. \)
 j. The y-intercept is 3.
 k. The line \(y = \frac{1}{2} \) intersects the graph 3 times.
 l. The line \(x = 5 \) intersects the graph 1 time.
 m. \(f(x) = 3 \) when \(x = 0 \) and \(x = 4. \)
 n. \(f(x) = -2 \) when \(x = -5 \) and \(x = 8. \)

11. Not a function since vertical lines will intersect the graph in more than one point.

12. Function
Section 2.2: The Graph of a Function

a. Domain: \(\{ x \mid x \text{ is any real number} \} \);
 Range: \(\{ y \mid y > 0 \} \)
b. Intercepts: (0,1)
c. None

13. Function
a. Domain: \(\{ x \mid -\pi \leq x \leq \pi \} \);
 Range: \(\{ y \mid -1 \leq y \leq 1 \} \)
b. Intercepts: \((-\pi, 0), \ (\pi, 0), \ (0, 0) \)
c. Symmetry about the origin.

14. Function
a. Domain: \(\{ x \mid -\pi \leq x \leq \pi \} \);
 Range: \(\{ y \mid -1 \leq y \leq 1 \} \)
b. Intercepts: \((-\pi, 0), \ (\pi, 0), \ (0, 0) \)
c. Symmetry about the origin.

15. Not a function since vertical lines will intersect the graph in more than one point.

16. Not a function since vertical lines will intersect the graph in more than one point.

17. Function
a. Domain: \(\{ x \mid x > 0 \} \);
 Range: \(\{ y \mid y \text{ is any real number} \} \)
b. Intercepts: (1, 0)
c. None

18. Function
a. Domain: \(\{ x \mid 0 \leq x \leq 4 \} \);
 Range: \(\{ y \mid 0 \leq y \leq 3 \} \)
b. Intercepts: (0, 0)
c. None

19. Function
a. Domain: \(\{ x \mid x \text{ is any real number} \} \);
 Range: \(\{ y \mid y \leq 2 \} \)
b. Intercepts: (-3, 0), (3, 0), (0,2)
c. Symmetry about y-axis.

20. Function
a. Domain: \(\{ x \mid x \geq -3 \} \);
 Range: \(\{ y \mid y \geq 0 \} \)
b. Intercepts: (-3, 0), (2,0), (0,2)
c. None

21. Function
a. Domain: \(\{ x \mid x \text{ is any real number} \} \);
 Range: \(\{ y \mid y \geq -3 \} \)
b. Intercepts: (1, 0), (3,0), (0,9)
c. None

22. Function
a. Domain: \(\{ x \mid x \text{ is any real number} \} \);
 Range: \(\{ y \mid y \leq 5 \} \)
b. Intercepts: (-1, 0), (2,0), (0,4)
c. None

23. \(f(x) = 2x^2 - x - 1 \)
a. \(f(-1) = 2(-1)^2 - (-1) - 1 = 2 \)
 The point \((-1,2)\) is on the graph of \(f \).
b. \(f(-2) = 2(-2)^2 - (-2) - 1 = 9 \)
 The point \((-2,9)\) is on the graph of \(f \).
c. Solve for \(x \):
 \(-1 = 2x^2 - x - 1\)
 \(0 = 2x^2 - x\)
 \(0 = x(2x - 1) \Rightarrow x = 0, x = \frac{1}{2}\)
 \((0, -1)\) and \(\left(\frac{1}{2}, -1\right)\) are on the graph of \(f \).
d. The domain of \(f \) is \(\{ x \mid x \text{ is any real number} \} \).
e. \(x \)-intercepts:
 \(f(x) = 0 \Rightarrow 2x^2 - x - 1 = 0 \)
 \((2x + 1)(x - 1) = 0 \Rightarrow x = -\frac{1}{2}, x = 1\)
 \(\left(-\frac{1}{2}, 0\right)\) and \((1,0)\)
Chapter 2: Functions and Their Graphs

24. \(f(x) = -3x^2 + 5x \)

a. \(f(-1) = -3(-1)^2 + 5(-1) = -8 \neq 2 \)
The point \((-1,2)\) is not on the graph of \(f\).

b. \(f(-2) = -3(-2)^2 + 5(-2) = -22 \)
The point \((-2,-22)\) is on the graph of \(f\).

c. Solve for \(x\):

 \[-2 = -3x^2 + 5x \Rightarrow 3x^2 - 5x - 2 = 0\]
 \((3x+1)(x-2) = 0 \Rightarrow x = -\frac{1}{3}, x = 2\)

 \((2, -2)\) and \((-\frac{1}{3}, -2)\) are on the graph of \(f\).

d. The domain of \(f\) is \(\{x \mid x \text{ is any real number}\}\).

25. \(f(x) = \frac{x+2}{x-6} \)

a. \(f(3) = \frac{3+2}{3-6} = -\frac{5}{3} \neq 14 \)
The point \((3,14)\) is not on the graph of \(f\).

b. \(f(4) = \frac{4+2}{4-6} = -\frac{6}{2} = -3 \)
The point \((4,-3)\) is on the graph of \(f\).

c. Solve for \(x\):

 \[2 = \frac{x+2}{x-6}\]
 \[2x - 12 = x + 2\]
 \[x = 14\]

 \((14, 2)\) is a point on the graph of \(f\).

d. The domain of \(f\) is \(\{x \mid x \neq 6\}\).

26. \(f(x) = x^2 + 2 \)

a. \(f(0) = \frac{0^2 + 2}{0} = \frac{2}{0} = \frac{1}{2} \)
The point \(\left(0, \frac{1}{2}\right)\) is on the graph of \(f\).

b. \(f(0) = \frac{0^2 + 2}{0} = \frac{2}{4} = \frac{1}{2} \)
The point \(\left(0, \frac{1}{2}\right)\) is on the graph of \(f\).

c. Solve for \(x\):

 \[\frac{1}{2} = \frac{x^2 + 2}{x+4} \Rightarrow x+4 = 2x^2 + 4\]
 \[0 = 2x^2 - x\]
 \[x(2x-1) = 0 \Rightarrow x = 0 \text{ or } x = \frac{1}{2}\]

 \(\left(0, \frac{1}{2}\right)\) and \(\left(\frac{1}{2}, \frac{1}{2}\right)\) are on the graph of \(f\).

d. The domain of \(f\) is \(\{x \mid x \neq -4\}\).

27. \(f(x) = \frac{2x^2}{x^3 + 1} \)

a. \(f(-1) = \frac{2(-1)^2}{(-1)^3 + 1} = \frac{2}{2} = 1 \)
The point \((-1,1)\) is on the graph of \(f\).
Section 2.2: The Graph of a Function

b. \[f(2) = \frac{2(2)^2}{(2)^4 + 1} = \frac{8}{17} \]
The point \(\left(2, \frac{8}{17}\right) \) is on the graph of \(f \).

c. Solve for \(x \):
\[1 = \frac{2x}{x^2 + 1} \]
\[x^4 + 1 = 2x^2 \]
\[x^4 - 2x^2 + 1 = 0 \]
\[(x^2 - 1)^2 = 0 \]
\[x^2 - 1 = 0 \Rightarrow x = \pm 1 \]
(1,1) and (–1,1) are on the graph of \(f \).

d. The domain of \(f \) is \{ \(x \mid x \) is any real number \}.

e. \(x \)-intercept:
\[f(x) = 0 \Rightarrow \frac{2x}{x^2 + 1} = 0 \]
\[2x = 0 \Rightarrow x = 0 \Rightarrow (0,0) \]

f. \(y \)-intercept:
\[f(0) = \frac{2(0)^2}{0^2 + 1} = 0 = 0 \Rightarrow (0,0) \]

28. \[f(x) = \frac{2x}{x - 2} \]
a. \[f\left(\frac{1}{2}\right) = \frac{2\left(\frac{1}{2}\right)}{\frac{1}{2} - 2} = \frac{1}{3} = \frac{-2}{3} \]
The point \(\left(\frac{1}{2}, \frac{-2}{3}\right) \) is on the graph of \(f \).

b. \[f(4) = \frac{2(4)}{4 - 2} = \frac{8}{2} = 4 \]
The point (4, 4) is on the graph of \(f \).

c. Solve for \(x \):
\[1 = \frac{2x}{x - 2} \Rightarrow x - 2 = 2x \Rightarrow -2 = x \]
\((-2, 1)\) is a point on the graph of \(f \).

d. The domain of \(f \) is \{ \(x \mid x \neq 2 \} \}.

e. \(x \)-intercept:
\[f(x) = 0 \Rightarrow \frac{2x}{x - 2} = 0 \Rightarrow 2x = 0 \]
\[\Rightarrow x = 0 \Rightarrow (0,0) \]

f. \(y \)-intercept: \(f(0) = \frac{0}{0-2} = 0 \Rightarrow (0,0) \)

29. \[h(x) = -\frac{44x^2}{y^2} + x + 6 \]
a. \[h(8) = -\frac{44(8)^2}{28^2} + (8) + 6 \]
\[= -\frac{2816}{784} + 14 \]
\[= 10.4 \text{ feet} \]

b. \[h(12) = -\frac{44(12)^2}{28^2} + (12) + 6 \]
\[= -\frac{6336}{784} + 18 \]
\[= 9.9 \text{ feet} \]

c. From part (a) we know the point \((8, 10.4) \) is on the graph and from part (b) we know the point \((12, 9.9) \) is on the graph. We could evaluate the function at several more values of \(x \) (e.g. \(x = 0 \), \(x = 15 \), and \(x = 20 \)) to obtain additional points.
\[h(0) = -\frac{44(0)^2}{28^2} + (0) + 6 = 6 \]
\[h(15) = -\frac{44(15)^2}{28^2} + (15) + 6 = 8.4 \]
\[h(20) = -\frac{44(20)^2}{28^2} + (20) + 6 = 3.6 \]

Some additional points are \((0,6) \), \((15,8.4) \) and \((20,3.6) \). The complete graph is given.
Chapter 2: Functions and Their Graphs

30. \(h(x) = -\frac{136x^2}{v^2} + 2.7x + 3.5 \)

 a. We want \(h(15) = 10 \).

 \[-\frac{136(15)^2}{v^2} + 2.7(15) + 3.5 = 10 \]

 \[-\frac{30,600}{v^2} = -34 \]

 \[v^2 = 900\]

 \[v = 30 \text{ ft/sec}\]

 The ball needs to be thrown with an initial velocity of 30 feet per second.

 b. \(h(x) = -\frac{126x^2}{30^2} + 2.7x + 3.5 \)

 which simplifies to

 \[h(x) = -\frac{34}{225}x^2 + 2.7x + 3.5\]

 c. Using the velocity from part (b),

 \[h(9) = -\frac{34}{225}(9)^2 + 2.7(9) + 3.5 = 15.56 \text{ ft}\]

 The ball will be 15.56 feet above the floor when it has traveled 9 feet in front of the foul line.

 d. Select several values for \(x \) and use these to find the corresponding values for \(h \). Use the results to form ordered pairs \((x, h)\). Plot the points and connect with a smooth curve.

 \[h(0) = -\frac{34}{225}(0)^2 + 2.7(0) + 3.5 = 3.5 \text{ ft}\]

 \[h(5) = -\frac{34}{225}(5)^2 + 2.7(5) + 3.5 = 13.2 \text{ ft}\]

 \[h(15) = -\frac{24}{225}(15)^2 + 2.7(15) + 3.5 = 10 \text{ ft}\]

 Thus, some points on the graph are \((0, 3.5)\), \((5, 13.2)\), and \((15, 10)\). The complete graph is given below.

31. \(h(x) = \frac{-32x^2}{130^2} + x \)

 a. \(h(100) = \frac{-32(100)^2}{130^2} + 100 \)

 \[= \frac{-320,000}{16,900} + 100 = 81.07 \text{ feet}\]

 b. \(h(300) = \frac{-32(300)^2}{130^2} + 300 \)

 \[= \frac{-2,880,000}{16,900} + 300 = 129.59 \text{ feet}\]
c. \[h(500) = \frac{-32(500)^2}{130^2} + 500 \]
\[= \frac{-8,000,000}{16,900} + 500 = 26.63 \text{ feet} \]

d. Solving \[h(x) = \frac{-32x^2}{130^2} + x = 0 \]
\[-\frac{32x^2}{130^2} + x = 0 \]
\[x \left(-\frac{32x}{130^2} + 1 \right) = 0 \]
\[x = 0 \quad \text{or} \quad -\frac{32x}{130^2} + 1 = 0 \]
\[1 = \frac{32x}{130^2} \]
\[130^2 = 32x \]
\[x = \frac{130^2}{32} = 528.13 \text{ feet} \]
Therefore, the golf ball travels 528.13 feet.

e. \[y_1 = \frac{-32x^2}{130^2} + x \]

f. Use INTERSECT on the graphs of
\[y_1 = \frac{-32x^2}{130^2} + x \quad \text{and} \quad y_2 = 90. \]

The ball reaches a height of 90 feet twice. The first time is when the ball has traveled approximately 115.07 feet, and the second time is when the ball has traveled about 413.05 feet.

g. The ball travels approximately 275 feet before it reaches its maximum height of approximately 131.8 feet.

<table>
<thead>
<tr>
<th>x</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>90</td>
</tr>
</tbody>
</table>

h. The ball travels approximately 264 feet before it reaches its maximum height of approximately 132.03 feet.

<table>
<thead>
<tr>
<th>x</th>
<th>y_1</th>
<th>y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>90</td>
</tr>
</tbody>
</table>

32. \(A(x) = 4x\sqrt{1-x^2} \)

a. Domain of \(A(x) = 4x\sqrt{1-x^2} \); we know that \(x \) must be greater than or equal to zero, since \(x \) represents a length. We also need \(1-x^2 \geq 0 \), since this expression occurs under a square root. In fact, to avoid \(\text{Area} = 0 \), we require \(x > 0 \) and \(1-x^2 > 0 \).

Solve: \(1-x^2 > 0 \)

\((1+x)(1-x) > 0 \)

Case 1: \(1+x > 0 \) and \(1-x > 0 \)
\(x > -1 \) and \(x < 1 \)
(i.e. \(-1 < x < 1 \))

Case 2: \(1+x < 0 \) and \(1-x < 0 \)
\(x < -1 \) and \(x > 1 \)
(which is impossible)

Therefore the domain of \(A \) is \(\{x \mid 0 < x < 1 \} \).
Chapter 2: Functions and Their Graphs

b. Graphing \(A(x) = 4x\sqrt{1-x^2} \)

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{graph1.png}
\caption{Graph of \(A(x) \)\
\end{figure}

c. When \(x = 0.7 \) feet, the cross-sectional area is maximized at approximately 1.9996 square feet. Therefore, the length of the base of the beam should be 1.4 feet in order to maximize the cross-sectional area.

33. \(C(x) = 100 + \frac{x}{10} + \frac{36000}{x} \)

a. Graphing:

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{graph2.png}
\caption{Graph of \(C(x) \)\
\end{figure}

b. TblStart = 0; \(\Delta Tbl = 50 \)

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{X} & \textbf{Y1} \\
\hline
0 & 120.0 \
50 & 119.98 \
100 & 119.97 \
150 & 119.96 \
200 & 119.95 \
250 & 119.94 \
300 & 119.93 \
350 & 119.92 \
400 & 119.91 \
500 & 119.90 \
\hline
\end{tabular}
\caption{Table for \(C(x) \)\
\end{table}

c. The cost per passenger is minimized to about $220 when the ground speed is roughly 600 miles per hour.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{X} & \textbf{Y1} \\
\hline
0 & 120.0 \
50 & 119.98 \
100 & 119.97 \
150 & 119.96 \
200 & 119.95 \
250 & 119.94 \
300 & 119.93 \
350 & 119.92 \
400 & 119.91 \
500 & 119.90 \
\hline
\end{tabular}
\caption{Table for \(C(x) \)\
\end{table}

34. \(W(h) = m \left(\frac{4000}{4000 + h} \right)^2 \)

a. \(h = 14110 \) feet = 2.67 miles

\[W(2.67) = 120 \left(\frac{4000}{4000 + 2.67} \right)^2 = 119.84 \]

On Pike's Peak, Amy will weigh about 119.84 pounds.

b. Graphing:

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{graph3.png}
\caption{Graph of \(W(h) \)\
\end{figure}

c. Create a TABLE:

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{X} & \textbf{Y1} \\
\hline
0 & 120.0 \
1 & 119.98 \
2 & 119.97 \
3 & 119.96 \
4 & 119.95 \
5 & 119.94 \
\hline
\end{tabular}
\caption{Table for \(W(h) \)\
\end{table}

The weight \(W \) will vary from 120 pounds to about 119.7 pounds.

d. By refining the table, Amy will weigh 119.95 lbs at a height of about 0.83 miles (4382 feet).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{X} & \textbf{Y1} \\
\hline
0 & 120.0 \
1 & 119.98 \
2 & 119.97 \
3 & 119.96 \
4 & 119.95 \
5 & 119.94 \
\hline
\end{tabular}
\caption{Table for \(W(h) \)\
\end{table}

e. Yes, 4382 feet is reasonable.

35. a. \((f + g)(2) = f(2) + g(2) = 2 + 1 = 3 \)

b. \((f + g)(4) = f(4) + g(4) = 1 + (-3) = -2 \)

c. \((f - g)(6) = f(6) - g(6) = 0 - 1 = -1 \)

d. \((g - f)(6) = g(6) - f(6) = 1 - 0 = 1 \)

e. \((f \cdot g)(2) = f(2) \cdot g(2) = 2 \cdot 1 = 2 \)

f. \(\left(\frac{f}{g} \right)(4) = \frac{f(4)}{g(4)} = \frac{1}{-3} = -\frac{1}{3} \)

36. Answers will vary. From a graph, the domain can be found by visually locating the x-values for which the graph is defined. The range can be found in a similar fashion by visually locating the y-values for which the function is defined.

If an equation is given, the domain can be found by locating any restricted values and removing them from the set of real numbers. The range can be found by using known properties of the graph of the equation, or estimated by means of a table of values.
37. The graph of a function can have any number of x-intercepts. The graph of a function can have at most one y-intercept (otherwise the graph would fail the vertical line test).

38. Yes, the graph of a single point is the graph of a function since it would pass the vertical line test. The equation of such a function would be something like the following: $f(x) = 2$, where $x = 7$.

39. (a) III; (b) IV; (c) I; (d) V; (e) II

40. (a) II; (b) V; (c) IV; (d) III; (e) I

41. \[y \]

42. \[y \]

43. a. 2 hours elapsed; Kevin was between 0 and 3 miles from home.
b. 0.5 hours elapsed; Kevin was 3 miles from home.
c. 0.3 hours elapsed; Kevin was between 0 and 3 miles from home.
d. 0.2 hours elapsed; Kevin was at home.
e. 0.9 hours elapsed; Kevin was between 0 and 2.8 miles from home.
f. 0.3 hours elapsed; Kevin was 2.8 miles from home.
g. 1.1 hours elapsed; Kevin was between 0 and 2.8 miles from home.
h. The farthest distance Kevin is from home is 3 miles.
i. Kevin returned home 2 times.

44. a. Michael travels fastest between 7 and 7.4 minutes. That is, $(7, 7.4)$.
b. Michael’s speed is zero between 4.2 and 6 minutes. That is, $(4.2, 6)$.
c. Between 0 and 2 minutes, Michael’s speed increased from 0 to 30 miles/hour.
d. Between 4.2 and 6 minutes, Michael was stopped (i.e., his speed was 0 miles/hour).
e. Between 7 and 7.4 minutes, Michael was traveling at a steady rate of 50 miles/hour.
f. Michael’s speed is constant between 2 and 4 minutes, between 4.2 and 6 minutes, between 7 and 7.4 minutes, and between 7.6 and 8 minutes. That is, on the intervals $(2, 4), (4.2, 6), (7, 7.4)$, and $(7.6, 8)$.

45. Answers (graphs) will vary. Points of the form $(5, y)$ and of the form $(x, 0)$ cannot be on the graph of the function.

46. The only such function is $f(x) = 0$ because it is the only function for which $f(x) = -f(x)$. Any other such graph would fail the vertical line test.

Section 2.3

1. $2 < x < 5$

2. slope $= \frac{\Delta y}{\Delta x} = \frac{8 - 3}{3 - (-2)} = \frac{5}{5} = 1$

3. x-axis: $y \mapsto -y$

\[
(-y) = 5x^2 - 1
\]

\[
y = 5x^2 - 1
\]

\[
y = -5x^2 + 1 \text{ different}
\]
Chapter 2: Functions and Their Graphs

16. \(f \) is decreasing on the intervals:
 \((-\infty, -8), (-2, 0), (2.5).\)

17. Yes. The local maximum at \(x = 2 \) is 10.

18. No. There is a local minimum at \(x = 5 \); the local minimum is 0.

19. \(f \) has local maxima at \(x = -2 \) and \(x = 2 \). The local maxima are 6 and 10, respectively.

20. \(f \) has local minima at \(x = -8, x = 0 \) and \(x = 5 \). The local minima are -4, 0, and 0, respectively.

21. a. Intercepts: \((-2, 0), (2, 0), \) and \((0, 2).\)
 b. Domain: \([-3, 3]\);
 c. Increasing: \((-3, -1) \) and \((1, 3).\)
 d. Since the graph is symmetric with respect to the y-axis, the function is even.

22. a. Intercepts: \((-1, 0), (1, 0), \) and \((0, 3).\)
 b. Domain: \([-3, 3]\);
 c. Increasing: \((-3, -1) \) and \((1, 3).\)
 d. Since the graph is symmetric with respect to the y-axis, the function is even.

23. a. Intercepts: \((0, 1).\)
 b. Domain: \([x \text{ is any real number}]\);
 c. Increasing: \((-\infty, \infty); \) Decreasing: never.
 d. Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.

24. a. Intercepts: \((1, 0).\)
 b. Domain: \([x \text{ is any real number}]\).
 c. Increasing: \((-\infty, \infty); \) Decreasing: never.
Section 2.3: Properties of Functions

d. Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.

25. a. Intercepts: \((-\pi, 0), (\pi, 0), \text{ and } (0, 0)\).

 b. Domain: \(\{x | -\pi \leq x \leq \pi\} \text{ or } [-\pi, \pi]\); Range: \(\{y | -1 \leq y \leq 1\} \text{ or } [-1, 1]\).

 c. Increasing: \((-\pi, -\frac{\pi}{2})\); Decreasing: \((-\frac{\pi}{2}, \pi)\).

 Since the graph is symmetric with respect to the origin, the function is odd.

26. a. Intercepts: \((-\frac{\pi}{2}, 0), (\frac{\pi}{2}, 0), \text{ and } (0, 1)\).

 b. Domain: \(\{x | -\pi \leq x \leq \pi\} \text{ or } [-\pi, \pi]\); Range: \(\{y | -1 \leq y \leq 1\} \text{ or } [-1, 1]\).

 c. Increasing: \((-\pi, 0)\); Decreasing: \((0, \pi)\).

 Since the graph is symmetric with respect to the y-axis, the function is even.

27. a. Intercepts: \((\frac{1}{3}, 0), (\frac{5}{2}, 0), \text{ and } (0, \frac{1}{2})\).

 b. Domain: \(\{x | -3 \leq x \leq 3\} \text{ or } [-3, 3]\); Range: \(\{y | -1 \leq y \leq 2\} \text{ or } [-1, 2]\).

 c. Increasing: \((2, 3)\); Decreasing: \((-1, 1)\); Constant: \((-3, -1)\) and \((1, 2)\).

 Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.

28. a. Intercepts: \((-2.3, 0), (3, 0), \text{ and } (0, 1)\).

 b. Domain: \(\{x | -3 \leq x \leq 3\} \text{ or } [-3, 3]\); Range: \(\{y | -2 \leq y \leq 2\} \text{ or } [-2, 2]\).

 c. Increasing: \((-3, -2)\) and \((0, 2)\); Decreasing: \((2, 3)\); Constant: \((-2, 0)\).

 Since the graph is not symmetric with respect to the y-axis or the origin, the function is neither even nor odd.

29. a. \(f\) has a local maximum of 3 at \(x = 0\).
 b. \(f\) has a local minimum of 0 at both \(x = -2\) and \(x = 2\).

30. a. \(f\) has a local maximum of 2 at \(x = 0\).
 b. \(f\) has a local minimum of 0 at both \(x = -1\) and \(x = 1\).

31. a. \(f\) has a local maximum of 1 at \(x = \frac{\pi}{2}\).
 b. \(f\) has a local minimum of \(-1\) at \(x = -\frac{\pi}{2}\).

32. a. \(f\) has a local maximum of 1 at \(x = 0\).
 b. \(f\) has a local minimum of \(-1\) both at \(x = -\pi\) and \(x = \pi\).

33. \(f(x) = 4x^3\)
 \(f(-x) = 4(-x)^3 = -4x^3 = -f(x)\)
 Therefore, \(f\) is odd.

34. \(f(x) = 2x^4 - x^2\)
 \(f(-x) = 2(-x)^4 - (-x)^2 = 2x^4 - x^2 = f(x)\)
 Therefore, \(f\) is even.

35. \(g(x) = -3x^2 - 5\)
 \(g(-x) = -3(-x)^2 - 5 = -3x^2 - 5 = g(x)\)
 Therefore, \(g\) is even.

36. \(h(x) = 3x^3 + 5\)
 \(h(-x) = 3(-x)^3 + 5 = -3x^3 + 5\)
 \(h\) is neither even nor odd.

37. \(F(x) = \sqrt{x}\)
 \(F(-x) = \sqrt{-x} = -\sqrt{x} = -F(x)\)
 Therefore, \(F\) is odd.

38. \(G(x) = \sqrt{x}\)
 \(G(-x) = \sqrt{-x}\)
 \(G\) is neither even nor odd.

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
Chapter 2: Functions and Their Graphs

39. \(f(x) = x + \vert x \vert \)
 \(f(-x) = -x + \vert -x \vert = -x + \vert x \vert \)
 \(f \) is neither even nor odd.

40. \(f(x) = \sqrt{2x^2 + 1} \)
 \(f(-x) = \sqrt{2(-x)^2 + 1} = \sqrt{2x^2 + 1} = f(x) \)
 Therefore, \(f \) is even.

41. \(g(x) = \frac{1}{x^2} \)
 \(g(-x) = \frac{1}{(-x)^2} = \frac{1}{x^2} = g(x) \)
 Therefore, \(g \) is even.

42. \(h(x) = \frac{x}{x^2 - 1} \)
 \(h(-x) = \frac{-x}{(-x)^2 - 1} = \frac{-x}{x^2 - 1} = -h(x) \)
 Therefore, \(h \) is odd.

43. \(h(x) = \frac{-x^3}{3x^2 - 9} \)
 \(h(-x) = \frac{-(x^3)}{3(-x)^2 - 9} = \frac{x^3}{3x^2 - 9} = -h(x) \)
 Therefore, \(h \) is odd.

44. \(F(x) = \frac{2x}{\vert x \vert} \)
 \(F(-x) = \frac{2(-x)}{-\vert -x \vert} = \frac{-2x}{\vert x \vert} = -F(x) \)
 Therefore, \(F \) is odd.

45. \(f \) has an absolute maximum of 4 at \(x = 1 \).
 \(f \) has an absolute minimum of 1 at \(x = 5 \).

46. \(f \) has an absolute maximum of 4 at \(x = 4 \).
 \(f \) has an absolute minimum of 0 at \(x = 5 \).

47. \(f \) has an absolute minimum of 1 at \(x = 1 \).
 \(f \) has an absolute maximum of 4 at \(x = 3 \).

48. \(f \) has an absolute minimum of 1 at \(x = 0 \).
 \(f \) has no absolute maximum.

49. \(f \) has an absolute minimum of 0 at \(x = 0 \).
 \(f \) has no absolute maximum.

50. \(f \) has an absolute maximum of 4 at \(x = 2 \).

51. \(f \) has no absolute maximum or minimum.

52. \(f \) has no absolute maximum or minimum.

53. \(f(x) = x^3 - 3x^2 + 2 \) on the interval \((-2, 2)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = x^3 - 3x^2 + 2 \).

54. \(f(x) = x^3 - 3x^2 + 5 \) on the interval \((-1, 3)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_1 = x^3 - 3x^2 + 5 \).
Section 2.3: Properties of Functions

f is increasing on: \((-1, 0)\) and \((2, 3)\);
f is decreasing on: \((0, 2)\)

55. \(f(x) = x^5 - x^3\) on the interval \((-2, 2)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_i = x^5 - x^3\).

 ![Graph of \(y_i = x^5 - x^3\)]

 local maximum at: \((-0.77, 0.19)\);
 local minimum at: \((0.77, -0.19)\);
 f is increasing on: \((-2, -0.77)\) and \((0.77, 2)\);
 f is decreasing on: \((-0.77, 0.77)\)

56. \(f(x) = x^4 - x^2\) on the interval \((-2, 2)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_i = x^4 - x^2\).

 ![Graph of \(y_i = x^4 - x^2\)]

 local maximum at: \((0.0, 0)\);
 local minimum at: \((-0.71, -0.25), (0.71, -0.25)\);
 f is increasing on: \((-0.71, 0)\) and \((0.71, 2)\);
 f is decreasing on: \((-2, -0.71)\) and \((0, 0.71)\)

57. \(f(x) = -0.2x^3 - 0.6x^2 + 4x - 6\) on the interval \((-6, 4)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_i = -0.2x^3 - 0.6x^2 + 4x - 6\).

 ![Graph of \(y_i = -0.2x^3 - 0.6x^2 + 4x - 6\)]

 local maximum at: \((1.77, -1.91)\);
 local minimum at: \((-3.77, -18.89)\);
 f is increasing on: \((-3.77, 1.77)\);
 f is decreasing on: \((-6, -3.77)\) and \((1.77, 4)\)

58. \(f(x) = -0.4x^3 + 0.6x^2 + 3x - 2\) on the interval \((-4, 5)\)
 Use MAXIMUM and MINIMUM on the graph of \(y_i = -0.4x^3 + 0.6x^2 + 3x - 2\).

 ![Graph of \(y_i = -0.4x^3 + 0.6x^2 + 3x - 2\)]

 local maximum at: \((2.16, 3.25)\);
local minimum at: \((-1.16, -4.05)\)
f is increasing on: \((-1.16, 2.16)\);
f is decreasing on: \((-4, -1.16)\) and \((2.16, 5)\)

59. \(f(x) = 0.25x^4 + 0.3x^3 - 0.9x^2 + 3\) on the interval \((-3, 2)\)
Use MAXIMUM and MINIMUM on the graph of \(y_j = 0.25x^4 + 0.3x^3 - 0.9x^2 + 3\).

60. \(f(x) = -0.4x^4 - 0.5x^3 + 0.8x^2 - 2\) on the interval \((-3, 2)\)
Use MAXIMUM and MINIMUM on the graph of \(y_j = -0.4x^4 - 0.5x^3 + 0.8x^2 - 2\).

61. \(f(x) = -2x^2 + 4\)

a. Average rate of change of \(f\) from \(x = 0\) to \(x = 2\)
\[
\frac{f(2) - f(0)}{2 - 0} = \frac{(-2(2)^2 + 4) - (-2(0)^2 + 4)}{2} = \frac{-16}{2} = -8
\]

b. Average rate of change of \(f\) from \(x = 1\) to \(x = 3\):
\[
\frac{f(3) - f(1)}{3 - 1} = \frac{(-2(3)^2 + 4) - (-2(1)^2 + 4)}{2} = \frac{-16}{2} = -8
\]
c. Average rate of change of \(f\) from \(x = 1\) to \(x = 4\):
\[
\frac{f(4) - f(1)}{4 - 1} = \frac{(-2(4)^2 + 4) - (-2(1)^2 + 4)}{3} = \frac{-30}{3} = -10
\]
62. \(f(x) = -x^3 + 1 \)

a. Average rate of change of \(f \) from \(x = 0 \) to \(x = 2 \):
\[
\frac{f(2) - f(0)}{2 - 0} = \frac{(-2)^3 + 1 - (0)^3 + 1}{2} = -\frac{8}{2} = -4
\]
b. Average rate of change of \(f \) from \(x = 1 \) to \(x = 3 \):
\[
\frac{f(3) - f(1)}{3 - 1} = \frac{-(3)^3 + 1 - (-1)^3 + 1}{2} = -\frac{26}{2} = -13
\]
c. Average rate of change of \(f \) from \(x = -1 \) to \(x = 1 \):
\[
\frac{f(1) - f(-1)}{1 - (-1)} = \frac{-(1)^3 + 1 - (-(-1)^3 + 1)}{2} = -\frac{2}{2} = -1
\]

63. \(g(x) = x^3 - 2x + 1 \)

a. Average rate of change of \(g \) from \(x = -3 \) to \(x = -2 \):
\[
\frac{g(-2) - g(-3)}{-2 - (-3)} = \frac{(-2)^3 - 2(-2) + 1 - (-3)^3 - 2(-3) + 1}{1} = \frac{17}{1} = 17
\]
b. Average rate of change of \(g \) from \(x = -1 \) to \(x = 1 \):
\[
\frac{g(1) - g(-1)}{1 - (-1)} = \frac{(1)^3 - 2(1) + 1 - (-1)^3 - 2(-1) + 1}{2} = -\frac{2}{2} = -1
\]

64. \(h(x) = x^2 - 2x + 3 \)

a. Average rate of change of \(h \) from \(x = -1 \) to \(x = 1 \):
\[
\frac{h(1) - h(-1)}{1 - (-1)} = \frac{[1]^2 - 2(1) + 3 - [(-1)^2 - 2(-1) + 3]}{2} = \frac{2}{2} = 0
\]
b. Average rate of change of \(h \) from \(x = 0 \) to \(x = 2 \):
\[
\frac{h(2) - h(0)}{2 - 0} = \frac{[2]^2 - 2(2) + 3 - [0]^2 - 2(0) + 3}{2} = \frac{6}{2} = 3
\]
c. Average rate of change of \(h \) from \(x = 2 \) to \(x = 5 \):
\[
\frac{h(5) - h(2)}{5 - 2} = \frac{[5]^2 - 2(5) + 3 - [2]^2 - 2(2) + 3}{3} = \frac{15}{3} = 5
\]

65. \(f(x) = 5x - 2 \)

a. Average rate of change of \(f \) from 1 to 3:
\[
\frac{\Delta y}{\Delta x} = \frac{f(3) - f(1)}{3 - 1} = \frac{13 - 3 - 10}{2} = 5
\]
Thus, the average rate of change of \(f \) from 1 to 3 is 5.

b. From (a), the slope of the secant line joining \((1, f(1))\) and \((3, f(3))\) is 5. We use the
point-slope form to find the equation of the secant line:
\[y - y_1 = m_{sec}(x - x_1) \]
\[y - 3 = 5(x - 1) \]
\[y - 3 = 5x - 5 \]
\[y = 5x - 2 \]

66. \(f(x) = -4x + 1 \)

a. Average rate of change of \(f \) from 2 to 5:
\[\frac{\Delta y}{\Delta x} = \frac{f(5) - f(2)}{5 - 2} = \frac{-19 - (-7)}{5 - 2} = \frac{-12}{3} = -4 \]
Therefore, the average rate of change of \(f \) from 2 to 5 is -4.

b. From (a), the slope of the secant line joining \((2, f(2))\) and \((5, f(5))\) is -4. We use the point-slope form to find the equation of the secant line:
\[y - y_1 = m_{sec}(x - x_1) \]
\[y - (-7) = -4(x - 2) \]
\[y + 7 = -4x + 8 \]
\[y = -4x + 1 \]

67. \(g(x) = x^2 - 2 \)

a. Average rate of change of \(g \) from -2 to 1:
\[\frac{\Delta y}{\Delta x} = \frac{g(1) - g(-2)}{1 - (-2)} = \frac{-1 - 2}{1 - (-2)} = \frac{-3}{3} = -1 \]
Therefore, the average rate of change of \(g \) from -2 to 1 is -1.

b. From (a), the slope of the secant line joining \((-2, g(-2))\) and \((1, g(1))\) is -1. We use the point-slope form to find the equation of the secant line:
\[y - y_1 = m_{sec}(x - x_1) \]
\[y - 2 = -1(x - (-2)) \]
\[y - 2 = -x + 2 \]
\[y = -x \]

68. \(h(x) = x^2 + 1 \)

a. Average rate of change of \(g \) from -1 to 2:
\[\frac{\Delta y}{\Delta x} = \frac{g(2) - g(-1)}{2 - (-1)} = \frac{5 - 2}{2 - (-1)} = \frac{3}{3} = 1 \]
Therefore, the average rate of change of \(g \) from -1 to 2 is 1.

b. From (a), the slope of the secant line joining \((-1, g(-1))\) and \((2, g(2))\) is 1. We use the point-slope form to find the equation of the secant line:
\[y - y_1 = m_{sec}(x - x_1) \]
\[y - 2 = 1(x - (-1)) \]
\[y - 2 = x + 1 \]
\[y = x + 3 \]

69. \(h(x) = x^2 - 2x \)

a. Average rate of change of \(h \) from 2 to 4:
\[\frac{\Delta y}{\Delta x} = \frac{h(4) - h(2)}{4 - 2} = \frac{8 - 0}{4 - 2} = \frac{8}{2} = 4 \]
Therefore, the average rate of change of \(h \) from 2 to 4 is 4.

b. From (a), the slope of the secant line joining \((2, h(2))\) and \((4, h(4))\) is 4. We use the point-slope form to find the equation of the secant line:
\[y - y_1 = m_{sec}(x - x_1) \]
\[y - 0 = 4(x - 2) \]
\[y = 4x - 8 \]

70. \(h(x) = -2x^2 + x \)

a. Average rate of change from 0 to 3:
\[\frac{\Delta y}{\Delta x} = \frac{h(3) - h(0)}{3 - 0} = \frac{-15 - 0}{3 - 0} = \frac{-15}{3} = -5 \]
Therefore, the average rate of change of \(h \) from 0 to 3 is -5.

b. From (a), the slope of the secant line joining \((0, h(0))\) and \((3, h(3))\) is -5. We use the point-slope form to find the equation of the secant line:
\[y - y_1 = m_{sec}(x - x_1) \]
\[y - 0 = -5(x - 0) \]
\[y = -5x \]

71. \(g(x) = x^3 - 27x \)
\[g(-x) = (-x)^3 - 27(-x) \]
\[= -x^3 + 27x \]
\[= -(x^3 - 27x) \]
\[= -g(x) \]
Since \(g(-x) = -g(x) \), the function is odd.
Section 2.3: Properties of Functions

b. Since \(g(x) \) is odd then it is symmetric about the origin so there exist a local maximum at \(x = -3 \).

\[
g(-3) = (-3)^3 - 27(-3) = -27 + 81 = 54
\]
So there is a local maximum of 54 at \(x = -3 \).

72. \(f(x) = -x^3 + 12x \)

a. \[
f(-x) = -(-x)^3 + 12(-x)
= x^3 - 12x
= -(-x^3 + 12x)
= -f(x)
\]
Since \(f(-x) = -f(x) \), the function is odd.

b. Since \(f(x) \) is odd then it is symmetric about the origin so there exist a local maximum at \(x = -3 \).

\[
f(-2) = -(-2)^3 + 12(-2) = 8 - 24 = -16
\]
So there is a local maximum of -16 at \(x = -2 \).

73. \(F(x) = -x^4 + 8x^2 + 8 \)

a. \[
F(-x) = -(-x)^4 + 8(-x)^2 + 8
= -x^4 + 8x + 8
= F(x)
\]
Since \(F(-x) = F(x) \), the function is even.

b. Since the function is even, its graph has y-axis symmetry. The second local maximum is in quadrant II and is 24 and occurs at \(x = -2 \).

c. Because the graph has y-axis symmetry, the area under the graph between \(x = 0 \) and \(x = 6 \) bounded below by the x-axis is the same as the area under the graph between \(x = -6 \) and \(x = 0 \) bounded below the x-axis. Thus, the area is 1612.8 square units.

74. \(G(x) = -x^4 + 32x^2 + 144 \)

a. \[
G(-x) = -(-x)^4 + 32(-x)^2 + 144
= -x^4 + 32x^2 + 144
= G(x)
\]
Since \(G(-x) = G(x) \), the function is even.

b. Since the function is even, its graph has y-axis symmetry. The second local maximum is in quadrant II and is 400 and occurs at \(x = -4 \).

c. Because the graph has y-axis symmetry, the area under the graph between \(x = 0 \) and \(x = 6 \) bounded below by the x-axis is the same as the area under the graph between \(x = -6 \) and \(x = 0 \) bounded below the x-axis. Thus, the area is 1612.8 square units.

75. \(C(x) = 0.3x^2 + 21x - 251 + \frac{2500}{x} \)

a. \[
y_1 = 0.3x^2 + 21x - 251 + \frac{2500}{x}
\]

b. Use MINIMUM. Rounding to the nearest whole number, the average cost is minimized when approximately 10 lawnmowers are produced per hour.

c. The minimum average cost is approximately $239 per mower.

76. a. \(C(t) = -0.002t^4 + .039t^3 - .285t^2 + .766t + .085 \)

Graph the function on a graphing utility and use the Maximum option from the CALC menu.
Chapter 2: Functions and Their Graphs

The concentration will be highest after about 2.16 hours.

b. Enter the function in Y1 and 0.5 in Y2.
Graph the two equations in the same window and use the Intersect option from the CALC menu.

After taking the medication, the woman can feed her child within the first 0.71 hours (about 42 minutes) or after 4.47 hours (about 4 hours 28 minutes) have elapsed.

77. a. avg. rate of change = \frac{P(2.5) - P(0)}{2.5 - 0}
\begin{align*}
&= \frac{0.18 - 0.09}{2.5 - 0} \\
&= \frac{0.09}{2.5} \\
&= 0.036 \text{ gram per hour}
\end{align*}
On overage, the population is increasing at a rate of 0.036 gram per hour from 0 to 2.5 hours.

b. avg. rate of change = \frac{P(6) - P(4.5)}{6 - 4.5}
\begin{align*}
&= \frac{0.50 - 0.35}{6 - 4.5} \\
&= \frac{0.15}{1.5} \\
&= 0.1 \text{ gram per hour}
\end{align*}
On overage, the population is increasing at a rate of 0.1 gram per hour from 4.5 to 6 hours.

c. The average rate of change is increasing as time passes. This indicates that the population is increasing at an increasing rate.

\begin{align*}
&= \frac{35.9 - 27.9}{2002 - 2000} \\
&= \frac{8}{2} \\
&= 4 \text{ percentage points per year}
\end{align*}
On overage, the percentage of returns that are e-filed is increasing at a rate of 4 percentage points per year from 2000 to 2002.

\begin{align*}
&= \frac{54.5 - 47.0}{2006 - 2004} \\
&= \frac{7.5}{2} \\
&= 3.75 \text{ percentage points per year}
\end{align*}
On overage, the percentage of returns that are e-filed is increasing at a rate of 3.75 percentage points per year from 2004 to 2006.

c. avg. rate of change = \frac{P(2008) - P(2006)}{2008 - 2006}
\begin{align*}
&= \frac{59.8 - 54.5}{2008 - 2006} \\
&= \frac{5.3}{2} \\
&= 2.65 \text{ percentage points per year}
\end{align*}
On overage, the percentage of returns that are e-filed is increasing at a rate of 2.65 percentage points per year from 2006 to 2008.
d. The average rate of change is decreasing as time passes. This indicates that the percentage of e-filers is increasing at a decreasing rate.

79. \(f(x) = x^2 \)

a. Average rate of change of \(f \) from \(x = 0 \) to \(x = 1 \):
\[
\frac{f(1) - f(0)}{1 - 0} = \frac{1^2 - 0^2}{1} = 1
\]

b. Average rate of change of \(f \) from \(x = 0 \) to \(x = 0.5 \):
\[
\frac{f(0.5) - f(0)}{0.5 - 0} = \frac{(0.5)^2 - 0^2}{0.5} = \frac{0.25}{0.5} = 0.5
\]

c. Average rate of change of \(f \) from \(x = 0 \) to \(x = 0.1 \):
\[
\frac{f(0.1) - f(0)}{0.1 - 0} = \frac{(0.1)^2 - 0^2}{0.1} = \frac{0.01}{0.1} = 0.1
\]

d. Average rate of change of \(f \) from \(x = 0 \) to \(x = 0.01 \):
\[
\frac{f(0.01) - f(0)}{0.01 - 0} = \frac{(0.01)^2 - 0^2}{0.01} = \frac{0.0001}{0.01} = 0.01
\]

e. Average rate of change of \(f \) from \(x = 0 \) to \(x = 0.001 \):
\[
\frac{f(0.001) - f(0)}{0.001 - 0} = \frac{(0.001)^2 - 0^2}{0.001} = \frac{0.000001}{0.001} = 0.001
\]

f. Graphing the secant lines:

g. The secant lines are beginning to look more and more like the tangent line to the graph of \(f \) at the point where \(x = 0 \).

h. The slopes of the secant lines are getting smaller and smaller. They seem to be approaching the number zero.
Chapter 2: Functions and Their Graphs

80. \(f(x) = x^2 \)

a. Average rate of change of \(f \) from \(x = 1 \) to \(x = 2 \):
\[
\frac{f(2) - f(1)}{2 - 1} = \frac{2^2 - 1^2}{1} = \frac{3}{1} = 3
\]
b. Average rate of change of \(f \) from \(x = 1 \) to \(x = 1.5 \):
\[
\frac{f(1.5) - f(1)}{1.5 - 1} = \frac{(1.5)^2 - 1^2}{0.5} = \frac{1.25}{0.5} = 2.5
\]
c. Average rate of change of \(f \) from \(x = 1 \) to \(x = 1.1 \):
\[
\frac{f(1.1) - f(1)}{1.1 - 1} = \frac{(1.1)^2 - 1^2}{0.1} = \frac{0.21}{0.1} = 2.1
\]
d. Average rate of change of \(f \) from \(x = 1 \) to \(x = 1.01 \):
\[
\frac{f(1.01) - f(1)}{1.01 - 1} = \frac{(1.01)^2 - 1^2}{0.01} = \frac{0.0201}{0.01} = 2.01
\]
e. Average rate of change of \(f \) from \(x = 1 \) to \(x = 1.001 \):
\[
\frac{f(1.001) - f(1)}{1.001 - 1} = \frac{(1.001)^2 - 1^2}{0.001} = \frac{0.002001}{0.001} = 2.001
\]
f. Graphing the secant lines:

81. \(f(x) = 2x + 5 \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} = \frac{2(x+h) + 5 - 2x - 5}{h} = \frac{2h}{h} = 2 \)

b. When \(x = 1 \):
\(h = 0.5 \Rightarrow m_{sec} = 2 \)
\(h = 0.1 \Rightarrow m_{sec} = 2 \)
\(h = 0.01 \Rightarrow m_{sec} = 2 \)
as \(h \to 0, m_{sec} \to 2 \)

c. Using the point \((1, f(1)) = (1, 7)\) and slope, \(m = 2 \), we get the secant line:
\[
y - 7 = 2(x - 1) \\
y - 7 = 2x - 2 \\
y = 2x + 5
\]

d. Graphing:

The graph and the secant line coincide.
Section 2.3: Properties of Functions

82. \(f(x) = -3x + 2 \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)
 \(= \frac{-3(x+h) + 2 - (-3x + 2)}{h} \)
 \(= \frac{-3h}{h} = -3 \)

b. When \(x = 1 \),
 \(h = 0.5 \Rightarrow m_{sec} = -3 \)
 \(h = 0.1 \Rightarrow m_{sec} = -3 \)
 \(h = 0.01 \Rightarrow m_{sec} = -3 \)
 as \(h \to 0 \), \(m_{sec} \to -3 \)

c. Using point \((1, f(1)) = (1, -1)\) and slope \(= -3\), we get the secant line:
 \(y - (-1) = -3(x - 1) \)
 \(y + 1 = -3x + 3 \)
 \(y = -3x + 2 \)

d. Graphing:

![Graph of the function and its secant line](image)

The graph and the secant line coincide.

83. \(f(x) = x^2 + 2x \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)
 \(= \frac{(x+h)^2 + 2(x+h) - (x^2 + 2x)}{h} \)
 \(= \frac{x^2 + 2xh + h^2 + 2x + 2h - x^2 - 2x}{h} \)
 \(= \frac{2xh + h^2 + 2h}{h} \)
 \(= 2x + h + 2 \)

b. When \(x = 1 \),
 \(h = 0.5 \Rightarrow m_{sec} = 2 \cdot 1 + 0.5 + 2 = 4.5 \)
 \(h = 0.1 \Rightarrow m_{sec} = 2 \cdot 1 + 0.1 + 2 = 4.1 \)
 \(h = 0.01 \Rightarrow m_{sec} = 2 \cdot 1 + 0.01 + 2 = 4.01 \)
 as \(h \to 0 \), \(m_{sec} \to 2 \cdot 1 + 0 + 2 = 4 \)

c. Using point \((1, f(1)) = (1, 3)\) and slope \(= 4.01\), we get the secant line:
 \(y - 3 = 4.01(x - 1) \)
 \(y - 3 = 4.01x - 4.01 \)
 \(y = 4.01x - 1.01 \)

d. Graphing:

![Graph of the function and its secant line](image)

84. \(f(x) = 2x^2 + x \)

a. \(m_{sec} = \frac{f(x+h) - f(x)}{h} \)
 \(= \frac{2(x+h)^2 + (x+h) - (2x^2 + x)}{h} \)
 \(= \frac{2(x^2 + 2xh + h^2) + x + h - 2x^2 - x}{h} \)
 \(= \frac{2x^2 + 4xh + 2h^2 + x + h - 2x^2 - x}{h} \)
 \(= \frac{4xh + 2h^2 + h}{h} \)
 \(= 4x + 2h + 1 \)

b. When \(x = 1 \),
 \(h = 0.5 \Rightarrow m_{sec} = 4 \cdot 1 + 2(0.5) + 1 = 6 \)
 \(h = 0.1 \Rightarrow m_{sec} = 4 \cdot 1 + 2(0.1) + 1 = 5.2 \)
 \(h = 0.01 \Rightarrow m_{sec} = 4 \cdot 1 + 2(0.01) + 1 = 5.02 \)
 as \(h \to 0 \), \(m_{sec} \to 4 \cdot 1 + 2(0) + 1 = 5 \)

c. Using point \((1, f(1)) = (1, 3)\) and slope \(= 5.02\), we get the secant line:
 \(y - 3 = 5.02(x - 1) \)
 \(y - 3 = 5.02x - 5.02 \)
 \(y = 5.02x - 2.02 \)
Chapter 2: Functions and Their Graphs

85. \(f(x) = 2x^2 - 3x + 1 \)

a. \(m_{\text{sec}} = \frac{f(x+h) - f(x)}{h} \)
\[
= \frac{2(x+h)^2 - 3(x+h) + 1 - (2x^2 - 3x + 1)}{h}
\]
\[
= \frac{2(x^2 + 2xh + h^2) - 3x - 3h + 1 - 2x^2 + 3x - 1}{h}
\]
\[
= \frac{2x^2 + 4xh + 2h^2 - 3x - 3h + 1 - 2x^2 + 3x - 1}{h}
\]
\[
= \frac{4xh + 2h^2 - 3h}{h}
\]
\[
= 4x + 2h - 3
\]

b. When \(x = 1 \),
\(h = 0.5 \Rightarrow m_{\text{sec}} = 4 \cdot 1 + 2(0.5) - 3 = 2 \)
\(h = 0.1 \Rightarrow m_{\text{sec}} = 4 \cdot 1 + 2(0.1) - 3 = 1.2 \)
\(h = 0.01 \Rightarrow m_{\text{sec}} = 4 \cdot 1 + 2(0.01) - 3 = 1.02 \)
as \(h \to 0 \), \(m_{\text{sec}} \to 4 \cdot 1 + 2(0) - 3 = 1 \)

c. Using point \((1, f(1)) = (1,0)\) and slope = 0.99, we get the secant line:
y - 0 = 0.99(x - 1)
y = 0.99x - 0.99

d. Graphing:

86. \(f(x) = -x^2 + 3x - 2 \)

da. Graphing:

87. \(f(x) = \frac{1}{x} \)

a. \(m_{\text{sec}} = \frac{f(x+h) - f(x)}{h} \)
\[
= \frac{1}{x+h} - \frac{1}{x}
\]
\[
= \frac{x - (x+h)}{x(x+h)}
\]
\[
= \frac{-h}{x(x+h)} \cdot \frac{1}{h}
\]
\[
= -\frac{1}{(x+h)x}
\]
b. When \(x = 1 \),

\[
\begin{align*}
 h = 0.5 \Rightarrow m_{sec} &= -\frac{1}{(1+0.5)(1)} \\
&= -\frac{1}{1.5} = -\frac{2}{3} = -0.667
\end{align*}
\]

\[
\begin{align*}
 h = 0.1 \Rightarrow m_{sec} &= -\frac{1}{(1+0.1)(1)} \\
&= -\frac{1}{1.1} = -\frac{10}{11} = -0.909
\end{align*}
\]

\[
\begin{align*}
 h = 0.01 \Rightarrow m_{sec} &= -\frac{1}{(1+0.01)(1)} \\
&= -\frac{1}{1.01} = -\frac{100}{101} = -0.990
\end{align*}
\]

as \(h \to 0 \), \(m_{sec} \to -\frac{1}{(1+0)(1)} = -1 \)

c. Using point \((1, f(1)) = (1,1)\) and

slope = \(-\frac{100}{101}\), we get the secant line:

\[
\begin{align*}
 y-1 &= -\frac{100}{101}(x-1) \\
y &= -\frac{100}{101}x + \frac{100}{101}
\end{align*}
\]

d. Graphing:

\[
\begin{align*}
 f(x) &= \frac{1}{x^2}
\end{align*}
\]
Chapter 2: Functions and Their Graphs

89. Answers will vary. One possibility follows:

![Graph of a function with points at (-1, -2), (0, -3), (2, -6), and (3, 0).]

90. Answers will vary. See solution to Problem 89 for one possibility.

91. A function that is increasing on an interval can have at most one x-intercept on the interval. The graph of f could not “turn” and cross it again or it would start to decrease.

92. An increasing function is a function whose graph goes up as you read from left to right.

![Graph of an increasing function with arrows pointing upwards.]

A decreasing function is a function whose graph goes down as you read from left to right.

![Graph of a decreasing function with arrows pointing downwards.]

93. To be an even function we need $f(-x) = f(x)$ and to be an odd function we need $f(-x) = -f(x)$. In order for a function be both even and odd, we would need $f(x) = -f(x)$.

This is only possible if $f(x) = 0$.

94. The graph of $y = 5$ is a horizontal line.

![Graph of a horizontal line at y = 5.]

The local maximum is $y = 5$ and it occurs at each x-value in the interval.

95. Not necessarily. It just means $f(5) > f(2)$. The function could have both increasing and decreasing intervals.

96. \[
\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{0 - 0}{2 - (-2)} = 0
\]

Section 2.4

1. $y = \sqrt{x}$

![Graph of the square root function.]

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
Section 2.4: Library of Function; Piecewise-defined Functions

2. \(y = \frac{1}{x} \)

3. \(y = x^3 - 8 \)
 - \(y \)-intercept:
 Let \(x = 0 \), then \(y = (0)^3 - 8 = -8 \).
 - \(x \)-intercept:
 Let \(y = 0 \), then \(0 = x^3 - 8 \)
 \(x^3 = 8 \)
 \(x = 2 \)
 The intercepts are \((0, -8) \) and \((2, 0) \).

4. \((-\infty, 0) \)

5. piecewise-defined

6. True

7. False; the cube root function is odd and increasing on the interval \((-\infty, \infty) \).

8. False; the domain and range of the reciprocal function are both the set of real numbers except for 0.

9. C

10. A

11. E

12. G

13. B

14. D

15. F

16. H

17. \(f(x) = x \)

18. \(f(x) = x^2 \)

19. \(f(x) = x^3 \)

20. \(f(x) = \sqrt{x} \)
21. \(f(x) = \frac{1}{x} \)

22. \(f(x) = |x| \)

23. \(f(x) = \sqrt[3]{x} \)

24. \(f(x) = 3 \)

25. a. \(f(-2) = (-2)^2 = 4 \)
 b. \(f(0) = 2 \)
 c. \(f(2) = 2(2) + 1 = 5 \)

26. a. \(f(-2) = -3(-2) = 6 \)
 b. \(f(-1) = 0 \)
 c. \(f(0) = 2(0)^2 + 1 = 1 \)

27. a. \(f(0) = 2(0) - 4 = -4 \)
 b. \(f(1) = 2(1) - 4 = -2 \)
 c. \(f(2) = 2(2) - 4 = 0 \)
 d. \(f(3) = 3^3 - 2 = 25 \)

28. a. \(f(-1) = (-1)^3 = -1 \)
 b. \(f(0) = 0^3 = 0 \)
 c. \(f(1) = 3(1) + 2 = 5 \)
 d. \(f(3) = 3(3) + 2 = 11 \)

29. \(f(x) = \begin{cases} 2x & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \)
 a. Domain: \(\{x \mid x \text{ is any real number}\} \)
 b. \(x\)-intercept: none
 \(y\)-intercept: \(f(0) = 1 \)
 The only intercept is \((0,1) \).
 c. Graph:
 d. Range: \(\{y \mid y \neq 0\} \cup (-\infty, 0) \cup (0, \infty) \)
Section 2.4: Library of Function; Piecewise-defined Functions

30. \(f(x) = \begin{cases} 3x & \text{if } x \neq 0 \\ 4 & \text{if } x = 0 \end{cases} \)

a. Domain: \(\{x \mid x \text{ is any real number}\} \)

b. \(x \)-intercept: none

c. Graph:

\[\begin{array}{c}
\begin{array}{c}
\text{y-axis: (0, 4)} \\
\text{x-axis: (0, 4)} \\
\text{other points: (1, 3), (-1, -3)}
\end{array}
\end{array} \]

d. Range: \(\{ y \mid y \neq 0 \} ; (-\infty, 0) \cup (0, \infty) \)

e. The graph is not continuous. There is a jump at \(x = 0 \).

31. \(f(x) = \begin{cases} -2x + 3 & \text{if } x < 1 \\ 3x - 2 & \text{if } x \geq 1 \end{cases} \)

a. Domain: \(\{x \mid x \text{ is any real number}\} \)

b. \(x \)-intercept: none

c. Graph:

\[\begin{array}{c}
\begin{array}{c}
\text{y-axis: (0, 3)} \\
\text{x-axis: (0, 3)} \\
\text{other points: (2, 4), (1, 1)}
\end{array}
\end{array} \]

d. Range: \(\{ y \mid y \geq 1 \} ; [1, \infty) \)

e. The graph is continuous. There are no holes or gaps.

32. \(f(x) = \begin{cases} x + 3 & \text{if } x < -2 \\ -2x - 3 & \text{if } x \geq -2 \end{cases} \)

a. Domain: \(\{x \mid x \text{ is any real number}\} \)

b. \(x + 3 = 0 \quad -2x - 3 = 0 \)
\(x = -3 \quad -2x = 2 \quad x = -\frac{3}{2} \)

x-intercepts: \(-3, -\frac{3}{2}\)

y-intercept: \(f(0) = -2(0) - 3 = -3 \)

The intercepts are \((-3, 0), \left(-\frac{3}{2}, 0\right), \text{ and } (0, -3)\).

c. Graph:

\[\begin{array}{c}
\begin{array}{c}
\text{y-axis: (-3, 0)} \\
\text{x-axis: (-3, 0)} \\
\text{other points: (-2, 1), (0, -3), (0, 2), (0, 0)}
\end{array}
\end{array} \]

d. Range: \(\{ y \mid y \leq 1 \} ; (-\infty, 1] \)

e. The graph is continuous. There are no holes or gaps.

33. \(f(x) = \begin{cases} x + 3 & \text{if } -2 \leq x < 1 \\ -x + 2 & \text{if } x \geq 1 \end{cases} \)

a. Domain: \(\{x \mid x \geq -2\} ; [-2, \infty) \)

b. \(x + 3 = 0 \quad -x + 2 = 0 \)
\(x = -3 \quad -x = 2 \quad x = -2 \) (not in domain)

x-intercept: \(2 \)
Chapter 2: Functions and Their Graphs

106

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

y-intercept: \(f(0) = 0 + 3 = 3 \)

The intercepts are \((2, 0)\) and \((0, 3)\).

c. Graph:

\[
\begin{array}{c}
\text{y-axis:} \\
(1, 5) \\
(-2, 1) \\
-5 \\
-5 \\
\end{array}
\]

\[
\begin{array}{c}
\text{y-axis:} \\
(1, 4) \\
(1, 1) \\
-5 \\
-5 \\
\end{array}
\]

d. Range: \(\{y \mid y < 4, \ y = 5\} : (-\infty, 4) \cup \{5\} \)

e. The graph is not continuous. There is a jump at \(x = 1 \).

34. \(f(x) = \begin{cases} 2x + 5 & \text{if } -3 \leq x < 0 \\ -3 & \text{if } x = 0 \\ -5x & \text{if } x > 0 \end{cases} \)

a. Domain: \(\{x \mid x \geq -3\} ; [-3, \infty) \)

b. \(2x + 5 = 0 \quad -5x = 0 \)

\[2x = -5 \quad x = 0 \]

\[x = -\frac{5}{2} \quad \text{not in domain of piece} \]

x-intercept: \(-\frac{5}{2} \)

y-intercept: \(f(0) = -3 \)

The intercepts are \(\left(-\frac{5}{2}, 0\right) \) and \((0, -3)\).

c. Graph:

\[
\begin{array}{c}
\text{x-axis:} \\
(0, 5) \\
(-3, -1) \\
(0, -3) \\
(1, -5) \\
\end{array}
\]

d. Range: \(\{y \mid y < 5\} ; (-\infty, 5) \)

e. The graph is not continuous. There is a jump at \(x = 0 \).

35. \(f(x) = \begin{cases} 1 + x & \text{if } x < 0 \\ x^2 & \text{if } x \geq 0 \end{cases} \)

a. Domain: \(\{x \mid x \text{ is any real number}\} \)

b. \(1 + x = 0 \quad x^2 = 0 \)

\[x = -1 \quad x = 0 \]

x-intercepts: \(-1, 0\)

y-intercept: \(f(0) = 0^2 = 0 \)

The intercepts are \((-1, 0)\) and \((0, 0)\).

c. Graph:

\[
\begin{array}{c}
\text{x-axis:} \\
(0, 1) \\
(-1, 0) \\
\end{array}
\]

\[
\begin{array}{c}
\text{y-axis:} \\
(1, 1) \\
(0, 0) \\
\end{array}
\]

d. Range: \(\{y \mid y \text{ is any real number}\} \)

e. The graph is not continuous. There is a jump at \(x = 0 \).

36. \(f(x) = \begin{cases} \frac{1}{x} & \text{if } x < 0 \\ \sqrt[3]{x} & \text{if } x \geq 0 \end{cases} \)

a. Domain: \(\{x \mid x \text{ is any real number}\} \)

b. \(\frac{1}{x} = 0 \quad \sqrt[3]{x} = 0 \)

\[x = 0 \quad x = 0 \]

x-intercept: \(0\)

y-intercept: \(f(0) = \sqrt[3]{0} = 0 \)

The only intercept is \((0, 0)\).

c. Graph:

\[
\begin{array}{c}
\text{x-axis:} \\
(0, 5) \\
(-1, 1) \\
\end{array}
\]

\[
\begin{array}{c}
\text{y-axis:} \\
(1, 5) \\
(-1, -1) \\
\end{array}
\]
Section 2.4: Library of Function; Piecewise-defined Functions

37. \(f(x) = \begin{cases} \lfloor x \rfloor & \text{if } -2 \leq x < 0 \\ x^3 & \text{if } x > 0 \end{cases} \)

 a. Domain: \{x \mid -2 \leq x < 0 \text{ and } x > 0 \} or
 \{x \mid x \geq -2, x \neq 0\}; \([-2, 0) \cup (0, \infty)\).

 b. \(x \)-intercept: none
 There are no \(x \)-intercepts since there are no values for \(x \) such that \(f(x) = 0 \).

 y-intercept:
 There is no \(y \)-intercept since \(x = 0 \) is not in the domain.

 c. Graph:

 d. Range: \(\{y \mid y > 0\} \); \((0, \infty) \)

 e. The graph is not continuous. There is a break at \(x = 0 \).

38. \(f(x) = \begin{cases} 2 - x & \text{if } -3 \leq x < 1 \\ \sqrt{x} & \text{if } x > 1 \end{cases} \)

 a. Domain: \{x \mid -3 \leq x < 1 \text{ and } x > 1 \} or
 \{x \mid x \geq -3, x \neq 1\}; \([-3, 1) \cup (1, \infty)\).

 b. \(2 - x = 0 \quad \sqrt{x} = 0 \)

 \(x = 2 \quad x = 0 \)

 (not in domain of piece)

 no \(x \)-intercepts

 y-intercept: \(f(0) = 2 - 0 = 2 \)

 The intercept is \((0, 2) \).

 c. Graph:

 d. Range: \(\{y \mid y \text{ is any even integer}\} \)

 e. The graph is not continuous. There is a jump at each integer value of \(x \).

39. \(f(x) = 2 \text{int}(x) \)

 a. Domain: \{x \mid x \text{ is any real number}\}

 b. \(x \)-intercepts:
 All values for \(x \) such that \(0 \leq x < 1 \).

 y-intercept: \(f(0) = 2 \text{int}(0) = 0 \)

 The intercepts are all ordered pairs \((x, 0)\) when \(0 \leq x < 1 \).

 c. Graph:

 d. Range: \(\{y \mid y > 1\}; (1, \infty) \)

 e. The graph is not continuous. There is a hole at \(x = 1 \).

40. \(f(x) = \text{int}(2x) \)

 a. Domain: \{x \mid x \text{ is any real number}\}

 b. \(x \)-intercepts:
 All values for \(x \) such that \(0 \leq x < \frac{1}{2} \).

 y-intercept: \(f(0) = \text{int}(2(0)) = \text{int}(0) = 0 \)

 The intercepts are all ordered pairs \((x, 0)\) when \(0 \leq x < \frac{1}{2} \).
Chapter 2: Functions and Their Graphs

c. Graph:

\[\text{Graph:} \]

\[\text{Range: } \{y | y \text{ is an integer}\} \]

e. The graph is not continuous. There is a jump at each \(x = \frac{k}{2} \), where \(k \) is an integer.

41. Answers may vary. One possibility follows:

\[f(x) = \begin{cases} -x & \text{if } -1 \leq x \leq 0 \\ \frac{1}{2}x & \text{if } 0 < x \leq 2 \end{cases} \]

42. Answers may vary. One possibility follows:

\[f(x) = \begin{cases} x & \text{if } -1 \leq x \leq 0 \\ 1 & \text{if } 0 < x \leq 2 \end{cases} \]

43. Answers may vary. One possibility follows:

\[f(x) = \begin{cases} -x & \text{if } x \leq 0 \\ -x + 2 & \text{if } 0 < x \leq 2 \end{cases} \]

44. Answers may vary. One possibility follows:

\[f(x) = \begin{cases} 2x + 2 & \text{if } -1 \leq x \leq 0 \\ x & \text{if } x > 0 \end{cases} \]

45. a. \(f(1.2) = \text{int} \left(\frac{1.2}{2} \right) = \text{int}(2.4) = 2 \)

b. \(f(1.6) = \text{int} \left(\frac{1.6}{2} \right) = \text{int}(3.2) = 3 \)

c. \(f(-1.8) = \text{int} \left(\frac{2(-1.8)}{2} \right) = \text{int}(-3.6) = -4 \)

46. a. \(f(1.2) = \text{int} \left(\frac{1.2}{2} \right) = \text{int}(0.6) = 0 \)

b. \(f(1.6) = \text{int} \left(\frac{1.6}{2} \right) = \text{int}(0.8) = 0 \)

c. \(f(-1.8) = \text{int} \left(\frac{-1.8}{2} \right) = \text{int}(-0.9) = -1 \)

47. \[C = \begin{cases} 39.99 & \text{if } 0 < x \leq 450 \\ 0.45x - 162.51 & \text{if } x > 450 \end{cases} \]

a. \(C(200) = 39.99 \)

b. \(C(465) = 0.45(465) - 162.51 = 46.74 \)

c. \(C(451) = 0.45(451) - 162.51 = 40.44 \)

48. \[F(x) = \begin{cases} 3 & \text{if } 0 < x \leq 3 \\ 5\text{int}(x+1) + 1 & \text{if } 3 < x < 9 \\ 50 & \text{if } 9 \leq x \leq 24 \end{cases} \]

a. \(F(2) = 3 \)

Parking for 2 hours costs $3.

b. \(F(7) = 5\text{int}(7+1) + 1 = 41 \)

Parking for 7 hours costs $41.

c. \(F(15) = 50 \)

Parking for 15 hours costs $50.

d. \(24 \text{ min } \frac{1}{60} \text{ hr} = 0.4 \text{ hr} \)

\(F(8.4) = 5\text{int}(8.4+1) + 1 = 5(9) + 1 = 46 \)

Parking for 8 hours and 24 minutes costs $46.

49. a. Charge for 50 therms:

\[C = 15.95 + 0.3940(50) + 0.33606(50) \]

\[= 15.95 + 197 + 16.803 \]

\[= 277.783 \]

b. Charge for 500 therms:

\[C = 15.95 + 0.3940(500) + 0.10580(450) + 0.33606(50) \]

\[= 730.06 + 476.80 + 16.803 \]

\[= 1223.663 \]

c. For \(0 \leq x \leq 50 \):

\[C = 15.95 + 0.33606x + 0.3940x \]

\[= 0.73006x + 15.95 \]

For \(x > 50 \):

\[C = 15.95 + 0.33606(50) + 0.10580(x - 50) + 0.3940x \]

\[= 15.95 + 16.803 + 0.10580x - 5.29 + 0.3940x \]

\[= 0.4998x + 27.463 \]

The monthly charge function:

\[C = \begin{cases} 0.73006x + 15.95 & \text{for } 0 \leq x \leq 50 \\ 0.4998x + 27.463 & \text{for } x > 50 \end{cases} \]
50. a. Charge for 40 therms:
 \[C = 8.40 + 0.1473(20) + 0.0579(20) + 0.43(40) \]
 \[= 29.70 \]

b. Charge for 100 therms:
 \[C = 8.40 + 0.1473(20) + 0.0579(30) + 0.519(100) + 0.43(150) \]
 \[= 82.77 \]

c. For \(0 \leq x \leq 20 \):
 \[C = 8.40 + 0.1473x + 0.43x \]
 \[= 0.5773x + 8.40 \]

For \(20 < x \leq 50 \):
 \[C = 8.40 + 0.1473(20) + 0.0579(x - 20) + 0.43x \]
 \[= 8.40 + 2.946 + 0.0579x - 1.158 + 0.43x \]
 \[= 0.4879x + 10.188 \]

51. For schedule X:
 \[
 f(x) = \begin{cases}
 0.10x & \text{if } 0 < x \leq 8350 \\
 835.00 + 0.15(x - 8350) & \text{if } 8350 < x \leq 33,950 \\
 4675.00 + 0.25(x - 33,950) & \text{if } 33,950 < x \leq 82,250 \\
 16,750.00 + 0.28(x - 82,250) & \text{if } 82,250 < x \leq 171,550 \\
 41,754.00 + 0.33(x - 171,550) & \text{if } 171,550 < x \leq 372,950 \\
 108,216.00 + 0.35(x - 372,950) & \text{if } x > 372,950
 \end{cases}
 \]
52. For Schedule Y –1:

\[
f(x) = \begin{cases}
0.10x & \text{if } 0 < x \leq 16,700 \\
1670.00 + 0.15(x - 16,700) & \text{if } 16,700 < x \leq 67,900 \\
9350.00 + 0.25(x - 67,900) & \text{if } 67,900 < x \leq 137,050 \\
26,637.50 + 0.28(x - 137,050) & \text{if } 137,050 < x \leq 208,850 \\
46,741.50 + 0.33(x - 208,850) & \text{if } 208,850 < x \leq 372,950 \\
100,894.50 + 0.35(x - 372,950) & \text{if } x > 372,950
\end{cases}
\]

53. a. Let \(x \) represent the number of miles and \(C \) be the cost of transportation.

\[
C(x) = \begin{cases}
0.50x & \text{if } 0 \leq x \leq 100 \\
0.50(100) + 0.40(x - 100) & \text{if } 100 < x \leq 400 \\
0.50(100) + 0.40(300) + 0.25(x - 400) & \text{if } 400 < x \leq 800 \\
0.50(100) + 0.40(300) + 0.25(400) + 0(x - 800) & \text{if } 800 < x \leq 960
\end{cases}
\]

b. For hauls between 100 and 400 miles the cost is: \(C(x) = 10 + 0.40x \).

c. For hauls between 400 and 800 miles the cost is: \(C(x) = 70 + 0.25x \).
54. Let \(x \) = number of days car is used. The cost of renting is given by
\[
C(x) = \begin{cases}
95 & \text{if } x = 7 \\
119 & \text{if } 7 < x \leq 8 \\
143 & \text{if } 8 < x \leq 9 \\
167 & \text{if } 9 < x \leq 10 \\
190 & \text{if } 10 < x \leq 14
\end{cases}
\]

55. Let \(x \) = the amount of the bill in dollars. The minimum payment due is given by
\[
f(x) = \begin{cases}
x & \text{if } 0 \leq x < 10 \\
10 & \text{if } 10 \leq x < 500 \\
30 & \text{if } 500 \leq x < 1000 \\
50 & \text{if } 1000 \leq x < 1500 \\
70 & \text{if } x \geq 1500
\end{cases}
\]

56. Let \(x \) = the balance of the bill in dollars. The monthly interest charge is given by
\[
g(x) = \begin{cases}
0.015x & \text{if } 0 \leq x \leq 1000 \\
15 + 0.01(x-1000) & \text{if } x > 1000
\end{cases}
\]

57. a. \(W = 10^\circ C \)
b. \(W = 33 - \frac{(10.45 + 10\sqrt{5} - 5)(33 - 10)}{22.04} \approx 4^\circ C \)
c. \(W = 33 - \frac{(10.45 + 10\sqrt{15} - 15)(33 - 10)}{22.04} = -3^\circ C \)
d. \(W = 33 - 1.5958(33 - 10) = -4^\circ C \)
e. When \(0 \leq v < 1.79 \), the wind speed is so small that there is no effect on the temperature.
f. When the wind speed exceeds 20, the wind chill depends only on the air temperature.

58. a. \(W = -10^\circ C \)
b. \(W = 33 - \frac{(10.45 + 10\sqrt{5} - 5)(33 - 10)}{22.04} = -21^\circ C \)
c. \(W = 33 - \frac{(10.45 + 10\sqrt{15} - 15)(33 - 10)}{22.04} = -34^\circ C \)
d. \(W = 33 - 1.5958(33 - 10) = -36^\circ C \)

59. Let \(x \) = the number of ounces and \(C(x) \) = the postage due.
For \(0 < x \leq 1 \): \(C(x) = $1.17 \)
For \(1 < x \leq 2 \): \(C(x) = 1.17 + 0.17 = $1.34 \)
For \(2 < x \leq 3 \): \(C(x) = 1.17 + 2(0.17) = $1.51 \)
For \(3 < x \leq 4 \): \(C(x) = 1.17 + 3(0.17) = $1.68 \)
\[
\]
Chapter 2: Functions and Their Graphs

For 12 < x ≤ 13 : \(C(x) = 1.17 + 12(0.17) = 3.21 \)

60. Each graph is that of \(y = x^2 \), but shifted vertically.

If \(y = x^2 + k \), \(k > 0 \), the shift is up \(k \) units; if \(y = x^2 - k \), \(k > 0 \), the shift is down \(k \) units. The graph of \(y = x^2 - 4 \) is the same as the graph of \(y = x^2 \), but shifted down 4 units. The graph of \(y = x^2 + 5 \) is the graph of \(y = x^2 \), but shifted up 5 units.

61. Each graph is that of \(y = x^2 \), but shifted horizontally.

If \(y = (x-k)^2 \), \(k > 0 \), the shift is to the right \(k \) units; if \(y = (x+k)^2 \), \(k > 0 \), the shift is to the left \(k \) units. The graph of \(y = (x-5)^2 \) is the graph of \(y = x^2 \), but shifted to the left 4 units. The graph of \(y = (x-5)^2 \) is the graph of \(y = x^2 \), but shifted to the right 5 units.

62. Each graph is that of \(y = |x| \), but either compressed or stretched vertically.

If \(y = k|x| \) and \(k > 1 \), the graph is stretched vertically; if \(y = k|x| \) and \(0 < k < 1 \), the graph is compressed vertically. The graph of \(y = \frac{1}{4}|x| \) is the same as the graph of \(y = |x| \), but compressed vertically. The graph of \(y = 5|x| \) is the same as the graph of \(y = |x| \), but stretched vertically.

63. The graph of \(y = -x^2 \) is the reflection of the graph of \(y = x^2 \) about the x-axis.

The graph of \(y = -x^2 \) is the reflection of the graph of \(y = |x| \) about the x-axis.

Multiplying a function by \(-1\) causes the graph to be a reflection about the x-axis of the original function's graph.

64. The graph of \(y = \sqrt{-x} \) is the reflection about the y-axis of the graph of \(y = \sqrt{x} \).
The same type of reflection occurs when graphing \(y = 2x+1 \) and \(y = 2(-x)+1 \).

The graph of \(y = f(-x) \) is the reflection about the \(y \)-axis of the graph of \(y = f(x) \).

65. The graph of \(y = (x-1)^3 + 2 \) is a shifting of the graph of \(y = x^3 \) one unit to the right and two units up. Yes, the result could be predicted.

66. The graphs of \(y = x^n \), \(n \) a positive even integer, are all U-shaped and open upward. All go through the points \((-1, 1), (0, 0), \) and \((1, 1)\). As \(n \) increases, the graph of the function increases at a greater rate for \(|x| > 1 \) and is flatter around 0 for \(|x| < 1 \).

67. The graphs of \(y = x^n \), \(n \) a positive odd integer, all have the same general shape. All go through the points \((-1,-1), (0, 0), \) and \((1, 1)\). As \(n \) increases, the graph of the function increases at a greater rate for \(|x| > 1 \) and is flatter around 0 for \(|x| < 1 \).

68. \(f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases} \)

Yes, it is a function.

Domain = \{ \(x \mid x \text{ is any real number} \} \) or \((-\infty, \infty)\)

Range = \{ \(y \mid y = 0 \) or \(y = 1 \} \)

y-intercept: \(x = 0 \Rightarrow x \text{ is rational} \Rightarrow y = 1 \)

So the y-intercept is \(y = 1 \).

x-intercept: \(x = 0 \Rightarrow x \text{ is irrational} \)

So the graph has infinitely many x-intercepts, namely, there is an x-intercept at each irrational value of \(x \).

\(f(-x) = 1 = f(x) \) when \(x \) is rational;
\(f(-x) = 0 = f(x) \) when \(x \) is irrational.

Thus, \(f \) is even.

The graph of \(f \) consists of 2 infinite clusters of distinct points, extending horizontally in both directions. One cluster is located 1 unit above the \(x \)-axis, and the other is located along the \(x \)-axis.

69. For \(0 < x < 1 \), the graph of \(y = x^r \), \(r \) rational and \(r > 0 \), flattens down toward the \(x \)-axis as \(r \) gets bigger. For \(x > 1 \), the graph of \(y = x^r \) increases at a greater rate as \(r \) gets bigger.

Section 2.5

1. horizontal; right
2. \(y \)
3. vertical; up
4. True; the graph of \(y = -f(x) \) is the reflection about the \(x \)-axis of the graph of \(y = f(x) \).
5. False; to obtain the graph of \(y = f(x + 2) - 3 \) you shift the graph of \(y = f(x) \) to the left 2 units and down 3 units.

6. True

7. B

8. E

9. H

10. D

11. I

12. A

13. L

14. C

15. F

16. J

17. G

18. K

19. \(y = (x - 4)^3 \)

20. \(y = (x + 4)^3 \)

21. \(y = x^3 + 4 \)

22. \(y = x^3 - 4 \)

23. \(y = (-x)^3 = -x^3 \)

24. \(y = -x^3 \)

25. \(y = 4x^3 \)

26. \(y = \left(\frac{1}{4} x \right)^3 = \frac{1}{64} x^3 \)

27. (1) \(y = \sqrt{x} + 2 \)
 (2) \(y = -\left(\sqrt{x} + 2 \right) \)
 (3) \(y = -\left(\sqrt{-x} + 2 \right) = -\sqrt{-x} - 2 \)

28. (1) \(y = -\sqrt{x} \)
 (2) \(y = -\sqrt{x - 3} \)
 (3) \(y = -\sqrt{x - 3} - 2 \)

29. (1) \(y = -\sqrt{x} \)
 (2) \(y = -\sqrt{x} + 2 \)
 (3) \(y = -\sqrt{x} + 3 + 2 \)

30. (1) \(y = \sqrt{x} + 2 \)
 (2) \(y = \sqrt{-x} + 2 \)
 (3) \(y = \sqrt{-x + 3} + 2 = \sqrt{-x - 3} + 2 \)

31. (c); To go from \(y = f(x) \) to \(y = -f(x) \) we reflect about the \(x \)-axis. This means we change the sign of the \(y \)-coordinate for each point on the graph of \(y = f(x) \). Thus, the point \((3, 6)\) would become \((3, -6)\).

32. (d); To go from \(y = f(x) \) to \(y = f(-x) \), we reflect each point on the graph of \(y = f(x) \) about the \(y \)-axis. This means we change the sign of the \(x \)-coordinate for each point on the graph of \(y = f(x) \). Thus, the point \((3, 6)\) would become \((-3, 6)\).

33. (c); To go from \(y = f(x) \) to \(y = 2f(x) \), we stretch vertically by a factor of 2. Multiply the \(y \)-coordinate of each point on the graph of \(y = f(x) \) by 2. Thus, the point \((1, 3)\) would become \((1, 6)\).

34. (c); To go from \(y = f(x) \) to \(y = f(2x) \), we compress horizontally by a factor of 2. Divide the \(x \)-coordinate of each point on the graph of \(y = f(x) \) by 2. Thus, the point \((4, 2)\) would become \((2, 2)\).

35. a. The graph of \(y = f(x + 2) \) is the same as the graph of \(y = f(x) \), but shifted 2 units to the left. Therefore, the \(x \)-intercepts are \(-7\) and \(1\).
b. The graph of \(y = f(x - 2) \) is the same as the graph of \(y = f(x) \), but shifted 2 units to the right. Therefore, the \(x \)-intercepts are \(-3\) and \(5\).

c. The graph of \(y = 4f(x) \) is the same as the graph of \(y = f(x) \), but stretched vertically by a factor of 4. Therefore, the \(x \)-intercepts are still \(-5\) and \(3\) since the \(y \)-coordinate of each is 0.

d. The graph of \(y = f(-x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(y \)-axis. Therefore, the \(x \)-intercepts are \(5\) and \(-3\).

36. a. The graph of \(y = f(x + 4) \) is the same as the graph of \(y = f(x) \), but shifted 4 units to the left. Therefore, the \(x \)-intercepts are \(-12\) and \(-3\).

b. The graph of \(y = f(x - 3) \) is the same as the graph of \(y = f(x) \), but shifted 3 units to the right. Therefore, the \(x \)-intercepts are \(-5\) and \(4\).

c. The graph of \(y = 2f(x) \) is the same as the graph of \(y = f(x) \), but stretched vertically by a factor of 2. Therefore, the \(x \)-intercepts are still \(-8\) and \(1\) since the \(y \)-coordinate of each is 0.

d. The graph of \(y = f(-x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(y \)-axis. Therefore, the \(x \)-intercepts are \(8\) and \(-1\).

37. a. The graph of \(y = f(x + 2) \) is the same as the graph of \(y = f(x) \), but shifted 2 units to the left. Therefore, the graph of \(f(x + 2) \) is increasing on the interval \((-3, 3)\).

b. The graph of \(y = f(x - 5) \) is the same as the graph of \(y = f(x) \), but shifted 5 units to the right. Therefore, the graph of \(f(x - 5) \) is increasing on the interval \((4, 10)\).

c. The graph of \(y = -f(x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(x \)-axis. Therefore, we can say that the graph of \(y = -f(x) \) must be decreasing on the interval \((-1, 5)\).

d. The graph of \(y = f(-x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(y \)-axis. Therefore, we can say that the graph of \(y = f(-x) \) must be decreasing on the interval \((-5, 1)\).

38. a. The graph of \(y = f(x + 2) \) is the same as the graph of \(y = f(x) \), but shifted 2 units to the left. Therefore, the graph of \(f(x + 2) \) is decreasing on the interval \((-4, 5)\).

b. The graph of \(y = f(x - 5) \) is the same as the graph of \(y = f(x) \), but shifted 5 units to the right. Therefore, the graph of \(f(x - 5) \) is decreasing on the interval \((3, 12)\).

c. The graph of \(y = -f(x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(x \)-axis. Therefore, we can say that the graph of \(y = -f(x) \) must be increasing on the interval \((-2, 7)\).

d. The graph of \(y = f(-x) \) is the same as the graph of \(y = f(x) \), but reflected about the \(y \)-axis. Therefore, we can say that the graph of \(y = f(-x) \) must be increasing on the interval \((-7, 2)\).
Chapter 2: Functions and Their Graphs

39. \(f(x) = x^2 - 1 \)
 Using the graph of \(y = x^2 \), vertically shift downward 1 unit.
 ![Graph](image1.png)
 The domain is \((−∞, ∞)\) and the range is \([-1, ∞)\).

40. \(f(x) = x^2 + 4 \)
 Using the graph of \(y = x^2 \), vertically shift upward 4 units.
 ![Graph](image2.png)
 The domain is \((-∞, ∞)\) and the range is \([4, ∞)\).

41. \(g(x) = x^3 + 1 \)
 Using the graph of \(y = x^3 \), vertically shift upward 1 unit.
 ![Graph](image3.png)
 The domain is \((-∞, ∞)\) and the range is \((−∞, ∞)\).

42. \(g(x) = x^3 - 1 \)
 Using the graph of \(y = x^3 \), vertically shift downward 1 unit.
 ![Graph](image4.png)
 The domain is \((−∞, ∞)\) and the range is \((−∞, ∞)\).

43. \(h(x) = \sqrt{x - 2} \)
 Using the graph of \(y = \sqrt{x} \), horizontally shift to the right 2 units.
 ![Graph](image5.png)
 The domain is \([2, ∞)\) and the range is \([0, ∞)\).

44. \(h(x) = \sqrt{x + 1} \)
 Using the graph of \(y = \sqrt{x} \), horizontally shift to the left 1 unit.
 ![Graph](image6.png)
 The domain is \([-1, ∞)\) and the range is \([0, ∞)\).

45. \(f(x) = (x - 1)^3 + 2 \)
 Using the graph of \(y = x^3 \), horizontally shift to
the right 1 unit \(y = (x - 1)^3 \), then vertically shift up 2 units \(y = (x - 1)^3 + 2 \).

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

46. \(f(x) = (x + 2)^3 - 3 \)
Using the graph of \(y = x^3 \), horizontally shift to the left 2 units \(y = (x + 2)^3 \), then vertically shift down 3 units \(y = (x + 2)^3 - 3 \).

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

47. \(g(x) = 4\sqrt{x} \)
Using the graph of \(y = \sqrt{x} \), vertically stretch by a factor of 4.

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

48. \(f(x) = \frac{1}{2}\sqrt{x} \)
Using the graph of \(y = \sqrt{x} \), vertically compress by a factor of \(\frac{1}{2} \).

The domain is \([0, \infty)\) and the range is \([0, \infty)\).

49. \(f(x) = -\sqrt{x} \)
Using the graph of \(y = \sqrt{x} \), reflect the graph about the \(x \)-axis.

The domain is \((-\infty, \infty)\) and the range is \((-\infty, \infty)\).

50. \(f(x) = -\sqrt{x} \)
Using the graph of \(y = \sqrt{x} \), reflect the graph about the \(x \)-axis.
Chapter 2: Functions and Their Graphs

51. \(f(x) = 2(x+1)^2 -3 \)

Using the graph of \(y = x^2 \), horizontally shift to the left 1 unit \(y = (x+1)^2 \), vertically stretch by a factor of 2 \(y = 2(x+1)^2 \), and then vertically shift downward 3 units \(y = 2(x+1)^2 -3 \).

The domain is \(-\infty, \infty\) and the range is \(-3, \infty\).

52. \(f(x) = 3(x-2)^2 +1 \)

Using the graph of \(y = x^2 \), horizontally shift to the right 2 units \(y = (x-2)^2 \), vertically stretch by a factor of 3 \(y = 3(x-2)^2 \), and then vertically shift upward 1 unit \(y = 3(x-2)^2 +1 \).

The domain is \(-\infty, \infty\) and the range is \(-3, \infty\).

53. \(g(x) = 2\sqrt{x-2} +1 \)

Using the graph of \(y = \sqrt{x} \), horizontally shift to the right 2 units \(y = \sqrt{x-2} \), vertically stretch by a factor of 2 \(y = 2\sqrt{x-2} \), and then vertically shift upward 1 unit \(y = 2\sqrt{x-2} +1 \).

The domain is \(2, \infty\) and the range is \(1, \infty\).

54. \(g(x) = 3|x+1| -3 \)

Using the graph of \(y = |x| \), horizontally shift to the left 1 unit \(y = |x+1| \), vertically stretch by a factor of 3 \(y = 3|x+1| \), and then vertically shift downward 3 units \(y = 3|x+1| -3 \).

The domain is \(-\infty, \infty\) and the range is \([1, \infty)\).
Section 2.5: Graphing Techniques: Transformations

55. \(h(x) = \sqrt{-x} - 2 \)

Using the graph of \(y = \sqrt{x} \), reflect the graph about the \(y \)-axis \(y = \sqrt{-x} \) and vertically shift downward 2 units \(y = \sqrt{-x} - 2 \).

The domain is \((-\infty, 0]\) and the range is \([-2, \infty)\).

56. \(h(x) = \frac{4}{x} + 2 = 4 \left(\frac{1}{x} \right) + 2 \)

Stretch the graph of \(y = \frac{1}{x} \) vertically by a factor of 4 \(y = 4 \left(\frac{1}{x} \right) \) and vertically shift upward 2 units \(y = \frac{4}{x} + 2 \).

The domain is \((-\infty, 0]\) and the range is \([-2, \infty)\).

57. \(f(x) = -(x+1)^3 - 1 \)

Using the graph of \(y = x^3 \), horizontally shift to the left 1 unit \(y = (x+1)^3 \), reflect the graph about the \(x \)-axis \(y = -(x+1)^3 \), and vertically shift downward 1 unit \(y = -(x+1)^3 - 1 \).

The domain is \((-\infty, 0) \cup (0, \infty)\) and the range is \((-\infty, 2) \cup (2, \infty)\).

58. \(f(x) = -4\sqrt{x-1} \)

Using the graph of \(y = \sqrt{x} \), horizontally shift to the right 1 unit \(y = \sqrt{x-1} \), reflect the graph about the \(x \)-axis \(y = -\sqrt{x-1} \), and stretch vertically by a factor of 4 \(y = -4\sqrt{x-1} \).
Chapter 2: Functions and Their Graphs

59. \(g(x) = 2\left|1 - x\right| = 2\left|-(1 + x)\right| = 2\left|x - 1\right| \)
Using the graph of \(y = \left|x\right| \), horizontally shift to the right 1 unit \(\left[y = \left|x - 1\right]\right] \), and vertically stretch by a factor of 2 \(\left[y = 2\left|x - 1\right]\right] \).

The domain is \((-\infty, \infty)\) and the range is \((-\infty, 0]\).

60. \(g(x) = 4\sqrt{2-x} = 4\sqrt{-(x-2)} \)
Using the graph of \(y = \sqrt{x} \), reflect the graph about the \(y \)-axis \(\left[y = \sqrt{-x}\right] \), horizontally shift to the right 2 units \(\left[y = \sqrt{-(x-2)}\right] \), and vertically stretch by a factor of 4 \(\left[y = 4\sqrt{-(x-2)}\right] \).

The domain is \((-\infty, \infty)\) and the range is \([0, \infty)\).

61. \(h(x) = 2\text{int}(x-1) \)
Using the graph of \(y = \text{int}(x) \), horizontally shift to the right 1 unit \(\left[y = \text{int}(x-1)\right] \), and vertically stretch by a factor of 2 \(\left[y = 2\text{int}(x-1)\right] \).

The domain is \((-\infty, \infty)\) and the range is \(\{y \mid y \text{ is an even integer}\}\).

62. \(h(x) = \text{int}(-x) \)
Reflect the graph of \(y = \text{int}(x) \) about the \(y \)-axis.

The domain is \((-\infty, \infty)\) and the range is \(\{y \mid y \text{ is an integer}\}\).

63. a. \(F(x) = f(x) + 3 \)
Shift up 3 units.

The domain is \((-\infty, 2]\) and the range is \([0, \infty)\).
b. \(G(x) = f(x + 2) \)
Shift left 2 units.

c. \(P(x) = -f(x) \)
Reflect about the \(x \)-axis.

d. \(H(x) = f(x + 1) - 2 \)
Shift left 1 unit and shift down 2 units.

e. \(Q(x) = \frac{1}{2} f(x) \)
Compress vertically by a factor of \(\frac{1}{2} \).

f. \(g(x) = f(-x) \)
Reflect about the \(y \)-axis.

g. \(h(x) = f(2x) \)
Compress horizontally by a factor of \(\frac{1}{2} \).

64. a. \(F(x) = f(x) + 3 \)
Shift up 3 units.

b. \(G(x) = f(x + 2) \)
Shift left 2 units.
c. \(P(x) = -f(x) \)
Reflect about the \(x \)-axis.

\[(-4, 2) \quad (-2, 2) \quad (4, 2) \quad (2, -2) \]

\[\text{Reflect about the } x \text{-axis.} \]

\[\text{Compress horizontally by a factor of } \frac{1}{2}. \]

65. a. \(F(x) = f(x) + 3 \)
Shift up 3 units.

\[(-\pi, 3) \quad (-\frac{\pi}{2}, 2) \quad (\frac{\pi}{2}, 4) \]

\[\text{Shift up 3 units.} \]

f. \(g(x) = f(-x) \)
Reflect about the \(y \)-axis.

\[(-4, -1) \quad (-2, -1) \quad (4, -1) \quad (2, 1) \]

\[\text{Reflect about the } y \text{-axis.} \]
Section 2.5: Graphing Techniques: Transformations

d. \(H(x) = f(x+1) - 2 \)
Shift left 1 unit and shift down 2 units.

\[H(x) = f(x+1) - 2 \]

\((\pi/2 - 1, -3), (-\pi - 1, -2), (-\pi - 1, -3)\)

e. \(Q(x) = \frac{1}{2} f(x) \)
Compress vertically by a factor of \(\frac{1}{2} \).

\[Q(x) = \frac{1}{2} f(x) \]

\((\pi/2, \frac{1}{2}), (-\pi/2, \frac{1}{2}), (-\pi - \frac{1}{2}, \frac{1}{2})\)

f. \(g(x) = f(-x) \)
Reflect about the y-axis.

\[g(x) = f(-x) \]

\((-\pi/2, 1), (-\pi, 1), (-\pi - \frac{1}{2}, -1)\)

g. \(h(x) = f(2x) \)
Compress horizontally by a factor of \(\frac{1}{2} \).

\[h(x) = f(2x) \]

\((\pi/4, 1), (-\pi/4, -1)\)

66. a. \(F(x) = f(x) + 3 \)
Shift up 3 units.

\[F(x) = f(x) + 3 \]

\((0, 4), (-\pi, 2), (\pi, 2)\)

b. \(G(x) = f(x + 2) \)
Shift left 2 units.

\[G(x) = f(x + 2) \]

\((-2, 1), (-\pi - 2, -1), (\pi - 2, -1)\)
Chapter 2: Functions and Their Graphs

c. \(P(x) = -f(x) \)
 Reflect about the \(x \)-axis.

\begin{align*}
\text{Graph:} & \quad x \quad y \\
\text{Points:} & \quad (-\pi, 1), (\pi, 1), (0, -1) \\
\end{align*}

d. \(H(x) = f(x+1) - 2 \)
 Shift left 1 unit and shift down 2 units.

\begin{align*}
\text{Graph:} & \quad x \quad y \\
\text{Points:} & \quad (-\pi - 1, 3), (\pi - 1, 3) \\
\end{align*}

e. \(Q(x) = \frac{1}{2} f(x) \)
 Compress vertically by a factor of \(\frac{1}{2} \).

\begin{align*}
\text{Graph:} & \quad x \quad y \\
\text{Points:} & \quad (-\pi, -\frac{1}{2}), (\pi, -\frac{1}{2}) \\
\end{align*}

f. \(g(x) = f(-x) \)
 Reflect about the \(y \)-axis.

\begin{align*}
\text{Graph:} & \quad x \quad y \\
\text{Points:} & \quad (-\pi, 1), (\pi, 1) \\
\end{align*}

g. \(h(x) = f(2x) \)
 Compress horizontally by a factor of \(\frac{1}{2} \).

\begin{align*}
\text{Graph:} & \quad x \quad y \\
\text{Points:} & \quad (-\pi / 2, -1), (\pi / 2, -1) \\
\end{align*}

67. \(f(x) = x^2 + 2x \)
 \(f(x) = (x^2 + 2x + 1) - 1 \)
 \(f(x) = (x + 1)^2 - 1 \)
 Using \(f(x) = x^2 \), shift left 1 unit and shift down 1 unit.

\begin{align*}
\text{Graph:} & \quad x \quad y \\
\text{Points:} & \quad (-1, 0), (0, -1) \\
\end{align*}

68. \(f(x) = x^2 - 6x \)
 \(f(x) = (x^2 - 6x + 9) - 9 \)
 \(f(x) = (x - 3)^2 - 9 \)
 Using \(f(x) = x^2 \), shift right 3 units and shift down 9 units.

\begin{align*}
\text{Graph:} & \quad x \quad y \\
\text{Points:} & \quad (-1, 0), (0, -9) \\
\end{align*}

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
Section 2.5: Graphing Techniques: Transformations

71. \(f(x) = 2x^2 - 12x + 19 \)
 \[= 2\left(x^2 - 6x\right) + 19 \]
 \[= 2\left(x^2 - 6x + 9\right) + 19 - 18 \]
 \[= 2(x-3)^2 + 1 \]
Using \(f(x) = x^2 \), shift right 3 units, vertically stretch by a factor of 2, and then shift up 1 unit.

72. \(f(x) = 3x^2 + 6x + 1 \)
 \[= 3\left(x^2 + 2x\right) + 1 \]
 \[= 3\left(x^2 + 2x + 1\right) + 1 - 3 \]
 \[= 3(x+1)^2 - 2 \]
Using \(f(x) = x^2 \), shift left 1 unit, vertically stretch by a factor of 3, and shift down 2 units.

73. \(f(x) = -3x^2 - 12x - 17 \)
 \[= -3\left(x^2 + 4x\right) - 17 \]
 \[= -3\left(x^2 + 4x + 4\right) - 17 + 12 \]
 \[= -3(x+2)^2 - 5 \]
Using \(f(x) = x^2 \), shift left 2 units, stretch vertically by a factor of 3, reflect about the x-
Chapter 2: Functions and Their Graphs

74. \(f(x) = -2x^2 - 12x - 13 \)

\[
= -2(x^2 + 6x) - 13 \\
= -2(x^2 + 6x + 9) - 13 + 18 \\
= -2(x + 3)^2 + 5
\]

Using \(f(x) = x^2 \), shift left 3 units, stretch vertically by a factor of 2, reflect about the \(x \)-axis, and shift up 5 units.

75. \(y = (x - c)^2 \)

If \(c = 0 \), \(y = x^2 \).

If \(c = 3 \), \(y = (x - 3)^2 \); shift right 3 units.

If \(c = -2 \), \(y = (x + 2)^2 \); shift left 2 units.

76. \(y = x^2 + c \)

If \(c = 0 \), \(y = x^2 \).

If \(c = 3 \), \(y = x^2 + 3 \); shift up 3 units.

If \(c = -2 \), \(y = x^2 - 2 \); shift down 2 units.

77. a. From the graph, the thermostat is set at \(72^\circ F \) during the daytime hours. The thermostat appears to be set at \(65^\circ F \) overnight.

b. To graph \(y = T(t) - 2 \), the graph of \(T(t) \) is shifted down 2 units. This change will lower the temperature in the house by 2 degrees.

c. To graph \(y = T(t + 1) \), the graph of \(T(t) \) should be shifted left one unit. This change will cause the program to switch between the daytime temperature and overnight temperature one hour sooner. The home will begin warming up at 5am instead of 6am and will begin cooling down at 8pm instead.
Section 2.5: Graphing Techniques: Transformations

78. a. \(R(0) = 170.7(0)^2 + 1373(0) + 1080 = 1080 \)
 The estimated worldwide music revenue for 2005 is $1080 million.

 \[R(3) = 170.7(3)^2 + 1373(3) + 1080 \]
 \[= 6735.3 \]
 The estimated worldwide music revenue for 2008 is $6735.3 million.

 \[R(5) = 170.7(5)^2 + 1373(5) + 1080 \]
 \[= 12,212.5 \]
 The estimated worldwide music revenue for 2010 is $12,212.5 million.

b. \(r(x) = R(x - 5) \)
 \[= 170.7(x - 5)^2 + 1373(x - 5) + 1080 \]
 \[= 170.7(x^2 - 10x + 25) + 1373(x - 5) \]
 \[+ 1080 \]
 \[= 170.7x^2 - 1707x + 4267.5 + 1373x \]
 \[- 6865 + 1080 \]
 \[= 170.7x^2 - 334x - 1517.5 \]

c. The graph of \(r(x) \) is the graph of \(R(x) \)
 shifted 5 units to the left. Thus, \(r(x) \)
 represents the estimated worldwide music revenue, \(x \) years after 2000.

 \[r(5) = 170.7(5)^2 - 334(5) - 1517.5 = 1080 \]
 The estimated worldwide music revenue for 2005 is $1080 million.

d. In \(r(x) \), \(x \) represents the number of years
 after 2000 (see the previous part).

e. Answers will vary. One advantage might be
 that it is easier to determine what value
 should be substituted for \(x \) when using \(r(x) \)
 instead of \(R(x) \) to estimate worldwide
 music revenue.

79. \(F = \frac{9}{5} C + 32 \)

\[(0, 32) \]

\[(100, 212) \]

Shift the graph 273 units to the right.
80. a. \(T = 2\pi \sqrt{\frac{l}{g}} \)

![Graph of T vs l]

b. \(T_1 = 2\pi \sqrt{\frac{l+1}{g}} \); \(T_2 = 2\pi \sqrt{\frac{l+2}{g}} \);

\(T_3 = 2\pi \sqrt{\frac{l+3}{g}} \)

![Graphs of T_1, T_2, T_3 vs l]

c. As the length of the pendulum increases, the period increases.

d. \(T_1 = 2\pi \sqrt{\frac{2l}{g}} \); \(T_2 = 2\pi \sqrt{\frac{3l}{g}} \); \(T_3 = 2\pi \sqrt{\frac{4l}{g}} \)

![Graphs of T_1, T_2, T_3 vs l]

e. If the length of the pendulum is multiplied by \(k \), the period is multiplied by \(\sqrt{k} \).

81. a. \(p(x) = -0.05x^2 + 100x - 2000 \)

![Graphs of Y1 and Y2]

b. Select the 10\% tax since the profits are higher.

c. The graph of \(Y_1 \) is obtained by shifting the graph of \(p(x) \) vertically down 10,000 units. The graph of \(Y_2 \) is obtained by multiplying the \(y \)-coordinate of the graph of \(p(x) \) by 0.9. Thus, \(Y_2 \) is the graph of \(p(x) \) vertically compressed by a factor of 0.9.

d. Select the 10\% tax since the graph of \(Y_1 = 0.9p(x) \geq Y_2 = -0.05x^2 + 100x - 6800 \) for all \(x \) in the domain.

82. a. \(y = |f(x)| \)

![Graph of y vs x]

b. \(y = f(|x|) \)

![Graph of y vs x]

83. a. To graph \(y = |f(x)| \), the part of the graph for \(f \) that lies in quadrants III or IV is reflected about the \(x \)-axis.
Section 2.6: Mathematical Models: Building Functions

84. a. The graph of \(y = f(x+3) - 5 \) is the graph of \(y = f(x) \) but shifted left 3 units and down 5 units. Thus, the point \((1,3)\) becomes the point \((-2,-2)\).

b. The graph of \(y = -2f(x-2) + 1 \) is the graph of \(y = f(x) \) but shifted right 2 units, stretched vertically by a factor of 2, reflected about the \(x\)-axis, and shifted up 1 unit. Thus, the point \((1,3)\) becomes the point \((3,-5)\).

c. The graph of \(y = f(2x+3) \) is the graph of \(y = f(x) \) but shifted left 3 units and horizontally compressed by a factor of 2. Thus, the point \((1,3)\) becomes the point \((-1,3)\).

85. a. The graph of \(y = g(x+1) - 3 \) is the graph of \(y = g(x) \) but shifted left 1 unit and down 3 units. Thus, the point \((-3,5)\) becomes the point \((-4,2)\).

b. The graph of \(y = -3g(x-4) + 3 \) is the graph of \(y = g(x) \) but shifted right 4 units, stretched vertically by a factor of 3, reflected about the \(x\)-axis, and shifted up 3 units. Thus, the point \((-3,5)\) becomes the point \((-4,5)\).

c. The graph of \(y = g(3x+9) \) is the graph of \(y = f(x) \) but shifted left 9 units and horizontally compressed by a factor of 3. Thus, the point \((-3,5)\) becomes the point \((-4,5)\).

86. The graph of \(y = 4f(x) \) is a vertical stretch of the graph of \(f \) by a factor of 4, while the graph of \(y = f(4x) \) is a horizontal compression of the graph of \(f \) by a factor of \(\frac{1}{4} \).

87. The graph of \(y = f(x) - 2 \) will shift the graph of \(y = f(x) \) down by 2 units. The graph of \(y = f(x-2) \) will shift the graph of \(y = f(x) \) to the right by 2 units.

88. The graph of \(y = \sqrt{-x} \) is the graph of \(y = \sqrt{x} \) but reflected about the \(y\)-axis. Therefore, our region is simply rotated about the \(y\)-axis and does not change shape. Instead of the region being bounded on the right by \(x = 4 \), it is bounded on the left by \(x = -4 \). Thus, the area of the second region would also be \(\frac{16}{3} \) square units.

89 – 94. Interactive Exercises.

Section 2.6

1. a. The distance \(d \) from \(P \) to the origin is \(d = \sqrt{x^2 + y^2} \). Since \(P \) is a point on the graph of \(y = x^2 - 8 \), we have:
\[
d(x) = \sqrt{x^2 + (x^2 - 8)^2} = \sqrt{x^4 - 15x^2 + 64}
\]
b. \(d(0) = \sqrt{0^4 -15(0)^2 + 64} = \sqrt{64} = 8 \)
c. \(d(1) = \sqrt{(1)^4 - 15(1)^2 + 64} = \sqrt{1 - 15 + 64} = \sqrt{50} = 5\sqrt{2} = 7.07 \)
d.
\[
\begin{align*}
\text{d} & \text{ is smallest when } x = -2.74 \text{ or when } x = 2.74.
\end{align*}
\]

\[\begin{array}{c}
\text{Chapter 2: Functions and Their Graphs}
\end{array}\]

2. a. The distance \(d \) from \(P \) to \((0, -1)\) is
\[
d = \sqrt{x^2 + (y + 1)^2}.
\]
Since \(P \) is a point on the graph of \(y = x^2 - 8 \), we have:
\[
d(x) = \sqrt{x^2 + (x^2 - 8 + 1)^2} = \sqrt{x^2 + (x^2 - 7)^2} = \sqrt{x^2 - 13x^2 + 49}
\]

b. \(d(0) = \sqrt{0^4 - 13(0)^2 + 49} = 7 \)

c. \(d(-1) = \sqrt{(-1)^4 - 13(-1)^2 + 49} = 6.08 \)

d.
\[\begin{array}{c}
\text{Minimum at } x = 2.73, \text{ Vertex at } (-1, -5), \text{ Vertex at } (7, -5)
\end{array}\]

3. a. The distance \(d \) from \(P \) to the point \((1, 0)\) is
\[
d = \sqrt{(x-1)^2 + y^2}.
\]
Since \(P \) is a point on the graph of \(y = \sqrt{x} \), we have:
\[
d(x) = \sqrt{(x-1)^2 + (\sqrt{x})^2} = \sqrt{x^2 - x + 1}
\]

where \(x \geq 0 \).

4. a. The distance \(d \) from \(P \) to the origin is
\[
d = \sqrt{x^2 + y^2}.
\]
Since \(P \) is a point on the graph of \(y = \frac{1}{x} \), we have:
\[
d(x) = \sqrt{x^2 + \left(\frac{1}{x}\right)^2} = \frac{\sqrt{x^2 + x^2}}{|x|} = \frac{x^2 + 1}{|x|}
\]

b.
\[\begin{array}{c}
\text{Minimum at } x = 2, \text{ Vertex at } (-2, 5), \text{ Vertex at } (2, 5)
\end{array}\]

c. \(d \) is smallest when \(x = -1 \) or \(x = 1 \).

5. By definition, a triangle has area
\[
A = \frac{1}{2}bh, \text{ base, height. From the figure, we know that } b = x \text{ and } h = y.
\]
Expressing the area of the triangle as a function of \(x \), we have:
\[
A(x) = \frac{1}{2}x(y(x^3)) = \frac{1}{2}x^4.
\]

6. By definition, a triangle has area
\[
A = \frac{1}{2}bh, \text{ base, height. Because one vertex of the triangle is at the origin and the}
\]
other is on the \(x \)-axis, we know that \(b = x \) and \(h = y \). Expressing the area of the triangle as a function of \(x \), we have:
\[
A(x) = \frac{1}{2} xy = \frac{1}{2} x \left(9 - x^2 \right) = \frac{9}{2} x - \frac{1}{2} x^3.
\]

7. a. \(A(x) = xy = x \left(16 - x^2 \right) = -x^3 + 16x \)
 b. Domain: \(\{ x \mid 0 < x < 4 \} \)
 c. The area is largest when \(x = 2.31 \).

8. a. \(A(x) = 2xy = 2x\sqrt{4-x^2} \)
 b. \(p(x) = 2(2x) + 2(2y) = 4x + 2\sqrt{4-x^2} \)
 c. Graphing the area equation:
 d. Graphing the perimeter equation:

9. a. In Quadrant I, \(x^2 + y^2 = 4 \rightarrow y = \sqrt{4-x^2} \)
 \[
 A(x) = (2x)(2y) = 4x\sqrt{4-x^2}
 \]
 b. \(p(x) = 2(2x) + 2(2y) = 4x + 4\sqrt{4-x^2} \)
 c. Graphing the area equation:
 d. Graphing the perimeter equation:

10. a. \(A(r) = (2r)(2r) = 4r^2 \)
 b. \(p(r) = 4(2r) = 8r \)

11. a. \(C = \) circumference, \(A = \) total area,
 \(r = \) radius, \(x = \) side of square
 \[
 C = 2\pi r = 10 - 4x \quad \Rightarrow \quad r = \frac{5-2x}{\pi}
 \]
Chapter 2: Functions and Their Graphs

Total Area = area_square + area_circle = x^2 + \pi r^2

\[
A(x) = x^2 + \pi \left(\frac{5 - 2x}{2} \right)^2 = x^2 + \frac{25 - 20x + 4x^2}{\pi}
\]

b. Since the lengths must be positive, we have:

\[10 - 4x > 0 \quad \text{and} \quad x > 0\]
\[-4x > -10 \quad \text{and} \quad x > 0\]
\[x < 2.5 \quad \text{and} \quad x > 0\]

Domain: \(\{ x \mid 0 < x < 2.5 \} \)

c. The total area is smallest when \(x = 1.40 \) meters.

12. a. \(C = \) circumference, \(A = \) total area,
\(r = \) radius, \(x = \) side of equilateral triangle

\[
C = 2\pi r = 10 - 3x \Rightarrow r = \frac{10 - 3x}{2\pi}
\]

The height of the equilateral triangle is \(\frac{\sqrt{3}}{2} x \).

Total Area = area_triangle + area_circle

\[
= \frac{1}{2} \cdot x \left(\frac{\sqrt{3}}{2} x \right) + \pi r^2
\]

\[
A(x) = \frac{\sqrt{3}}{4} x^2 + \pi \left(\frac{10 - 3x}{2\pi} \right)^2
\]

\[
= \frac{\sqrt{3}}{4} x^2 + \frac{100 - 60x + 9x^2}{4\pi}
\]

b. Since the lengths must be positive, we have:

\[10 - 3x > 0 \quad \text{and} \quad x > 0\]
\[-3x > -10 \quad \text{and} \quad x > 0\]
\[x < \frac{10}{3} \quad \text{and} \quad x > 0\]

Domain: \(\{ x \mid 0 < x < \frac{10}{3} \} \)

13. a. Since the wire of length \(x \) is bent into a circle, the circumference is \(x \). Therefore, \(C(x) = x \).

b. Since \(C = x = 2\pi r \), \(r = \frac{x}{2\pi} \).

\[
A(x) = \pi r^2 = \pi \left(\frac{x}{2\pi} \right)^2 = \frac{x^2}{4}.\]

14. a. Since the wire of length \(x \) is bent into a square, the perimeter is \(x \). Therefore, \(p(x) = x \).

b. Since \(P = x = 4s \), \(s = \frac{1}{4} x \), we have

\[
A(x) = s^2 = \left(\frac{1}{4} x \right)^2 = \frac{1}{16} x^2.\]

15. a. \(A = \) area, \(r = \) radius; diameter = 2\(r \)

\[
A(r) = (2r)(r) = 2r^2\]

b. \(p = \) perimeter

\[
p(r) = 2(2r) + 2r = 6r\]

16. \(C = \) circumference, \(r = \) radius;

\(x = \) length of a side of the triangle
Section 2.6: Mathematical Models: Building Functions

Since \(\Delta ABC \) is equilateral, \(EM = \frac{\sqrt{3}x}{2} \).

Therefore, \(OM = \frac{\sqrt{3}x}{2} - OE = \frac{\sqrt{3}x}{2} - r \)

In \(\Delta OAM \), \(r^2 = \left(\frac{x}{2} \right)^2 + \left(\frac{\sqrt{3}x}{2} - r \right)^2 \)

\[
\begin{align*}
 r^2 &= \frac{x^2}{4} + \frac{3}{4}x^2 - \sqrt{3}rx + r^2 \\
 \sqrt{3}rx &= x^2 \\
 r &= \frac{x}{\sqrt{3}}
\end{align*}
\]

Therefore, the circumference of the circle is

\[
C(x) = 2\pi r = 2\pi \left(\frac{x}{\sqrt{3}} \right) = \frac{2\pi \sqrt{3}}{3} x
\]

17. Area of the equilateral triangle

\[
A = \frac{1}{2} x \cdot \frac{\sqrt{3}}{2} x = \frac{\sqrt{3}}{4} x^2
\]

From problem 16, we have \(r^2 = \frac{x^2}{3} \).

Area inside the circle, but outside the triangle:

\[
A(x) = \pi r^2 - \frac{\sqrt{3}}{4} x^2
\]

\[
= \pi \frac{x^2}{3} - \frac{\sqrt{3}}{4} x^2 = \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4} \right) x^2
\]

18. \(d^2 = d_1^2 + d_2^2 \)

\[
d^2 = (30t)^2 + (40t)^2
\]

\[
d(t) = \sqrt{900t^2 + 1600t^2} = \sqrt{2500t^2} = 50t
\]

19. a. \(d^2 = d_1^2 + d_2^2 \)

\[
d^2 = (2 - 30t)^2 + (3 - 40t)^2
\]

\[
d(t) = \sqrt{(2 - 30t)^2 + (3 - 40t)^2}
\]

\[
= \sqrt{4 - 120t + 900t^2 + 9 - 240t + 1600t^2}
\]

\[
= \sqrt{2500t^2 - 360t + 13}
\]

b. The distance is smallest at \(t = 0.07 \) hours.

20. \(r = \) radius of cylinder, \(h = \) height of cylinder,

\(V = \) volume of cylinder

\[
r^2 + \left(\frac{h}{2} \right)^2 = R^2 \Rightarrow r^2 + \frac{h^2}{4} = R^2 \Rightarrow r^2 = R^2 - \frac{h^2}{4}
\]

\[
V = \pi r^2 h
\]

\[
V(h) = \pi \left(R^2 - \frac{h^2}{4} \right) h = \pi h \left(R^2 - \frac{h^2}{4} \right)
\]

21. \(r = \) radius of cylinder, \(h = \) height of cylinder,

\(V = \) volume of cylinder

By similar triangles:

\[
\frac{H}{R} = \frac{H - h}{r}
\]

\[
Hr = R(H - h)
\]

\[
R = RH - Rh
\]

\[
h = \frac{RH - Hr}{R} = \frac{H (R - r)}{R}
\]

\[
V = \pi r^2 h = \pi r^2 \left(H - \frac{R (R - r)}{R} \right) = \pi H (R - r) r^2
\]

22. a. The total cost of installing the cable along the road is \(500x \). If cable is installed \(x \) miles along the road, there are \(5 - x \) miles between the road to the house and where the cable ends along the road.
Chapter 2: Functions and Their Graphs

The total cost of installing the cable is:

\[C(x) = 500x + 700\sqrt{x^2 - 10x + 29} \]

Domain: \{ x \mid 0 \leq x \leq 5 \}

b. \[C(1) = 500(1) + 700\sqrt{1^2 - 10(1) + 29} = 500 + 700\sqrt{20} = \$3630.50 \]

c. \[C(3) = 500(3) + 700\sqrt{3^2 - 10(3) + 29} = 1500 + 700\sqrt{8} = \$3479.90 \]

d. Using MINIMUM, the graph indicates that \(x = 2.96 \) miles results in the least cost.

e. The time on the boat is given by \(\frac{d_1}{3} \). The time on land is given by \(\frac{12-x}{5} \).

\[d_1 = \sqrt{x^2 + 2^2} = \sqrt{25 - 10x + x^2 + 4} = \sqrt{x^2 - 10x + 29} \]

The total time for the trip is:

\[T(x) = \frac{12-x}{5} + \frac{d_1}{3} = \frac{12-x}{5} + \frac{\sqrt{x^2 + 4}}{3} \]

b. Domain: \{ x \mid 0 \leq x \leq 12 \}

c. \[T(4) = \frac{12-4}{5} + \frac{\sqrt{4^2 + 4}}{3} = \frac{8 + \sqrt{20}}{5} = 3.09 \text{ hours} \]

d. \[T(8) = \frac{12-8}{5} + \frac{\sqrt{8^2 + 4}}{3} = \frac{4 + \sqrt{68}}{5} = 3.55 \text{ hours} \]

24. Consider the diagrams shown below.
There is a pair of similar triangles in the diagram. Since the smaller triangle is similar to the larger triangle, we have the proportion
\[\frac{r}{h} = \frac{4}{16} \Rightarrow \frac{r}{h} = \frac{1}{4} \Rightarrow r = \frac{1}{4} h \]
Substituting into the volume formula for the conical portion of water gives
\[V(h) = \frac{1}{3} \pi r^2 h = \frac{1}{3} \left(\frac{1}{4} h \right)^2 h = \frac{\pi}{48} h^3. \]

25. a. length = 24 – 2x; width = 24 – 2x; height = x
\[V(x) = x(24-2x)(24-2x) = x(24-2x)^2 \]
b. \[V(3) = 3(24 – 2(3))^2 = 3(18)^2 \]
\[= 3(324) = 972 \text{ in}^3. \]
c. \[V(10) = 10(24 – 2(10))^2 = 10(4)^2 \]
\[= 10(16) = 160 \text{ in}^3. \]
d. \[y_1 = x(24 – 2x)^2 \]

The amount of material is least when \(x = 2.71 \text{ ft.} \)

Chapter 2 Review Exercises

1. This relation represents a function.
 Domain = \{-1, 2, 4\}; Range = \{0, 3\}.

2. This relation does not represent a function, since 4 is paired with two different values.

3. \[f(x) = \frac{3x}{\sqrt{x^2 - 1}} \]
a. \[f(2) = \frac{3(2)}{(2)^2 - 1} = \frac{6}{4 - 1} = \frac{6}{3} = 2 \]
Chapter 2: Functions and Their Graphs

b. \(f(-2) = \frac{3(-2)}{(-2)^2 - 1} = \frac{-6}{4 - 1} = \frac{-6}{3} = -2 \)

c. \(f(-x) = \frac{3(-x)}{(-x)^2 - 1} = \frac{-3x}{x^2 - 1} \)

d. \(-f(x) = \left(\frac{3x}{x^2 - 1}\right) = \frac{-3x}{x^2 - 1} \)

e. \(f(x-2) = \frac{3(x-2)}{(x-2)^2 - 1} \)

\[= \frac{3x - 6}{x^2 - 4x + 4 - 1} = \frac{3(x-2)}{x^2 - 4x + 3} \]

f. \(f(2x) = \frac{3(2x)}{(2x)^2 - 1} = \frac{6x}{4x^2 - 1} \)

4. \(f(x) = \frac{x^2}{x+1} \)

a. \(f(2) = \frac{2^2}{2+1} = \frac{4}{3} \)

b. \(f(-2) = \frac{(-2)^2}{-2+1} = \frac{4}{-1} = -4 \)

c. \(f(-x) = \frac{(-x)^2}{-x+1} = \frac{x^2}{-x+1} \)

d. \(-f(x) = -\frac{x^2}{x+1} = -\frac{x^2}{x+1} \)

e. \(f(x-2) = \frac{(x-2)^2}{(x-2)^2 - 1} = \frac{(x-2)^2}{x^2 - 1} \)

f. \(f(2x) = \frac{(2x)^2}{(2x)+1} = \frac{4x^2}{2x+1} \)

5. \(f(x) = \sqrt{x^2 - 4} \)

a. \(f(2) = \sqrt{2^2 - 4} = \sqrt{4 - 4} = \sqrt{0} = 0 \)

b. \(f(-2) = \sqrt{(-2)^2 - 4} = \sqrt{4 - 4} = \sqrt{0} = 0 \)

c. \(f(-x) = \sqrt{(-x)^2 - 4} = \sqrt{x^2 - 4} \)

d. \(-f(x) = -\sqrt{x^2 - 4} \)

e. \(f(x-2) = \sqrt{(x-2)^2 - 4} = \frac{x^2 - 4x + 4 - 4}{(x-2)^2} = \frac{x^2 - 4x}{(x-2)^2} \)

f. \(f(2x) = \sqrt{(2x)^2 - 4} = \frac{4x^2 - 4}{(2x)^2} = \frac{4x^2}{4x^2} = 1 \)

6. \(f(x) = |x^2 - 4| \)

a. \(f(2) = |2^2 - 4| = |4 - 4| = |0| = 0 \)

b. \(f(-2) = |-(-2)^2 - 4| = |-4| = |0| = 0 \)

c. \(f(-x) = |-x^2 - 4| = |x^2 - 4| \)

d. \(-f(x) = -|x^2 - 4| \)

e. \(f(x-2) = |(x-2)^2 - 4| \)

f. \(f(2x) = |(2x)^2 - 4| = |4x^2 - 4| \)

7. \(f(x) = \frac{x^2 - 4}{x^2} \)

a. \(f(2) = \frac{2^2 - 4}{2^2} = \frac{4 - 4}{4} = \frac{0}{4} = 0 \)

b. \(f(-2) = \frac{(-2)^2 - 4}{(-2)^2} = \frac{4 - 4}{4} = \frac{0}{4} = 0 \)

c. \(f(-x) = \frac{(-x)^2 - 4}{(-x)^2} = \frac{x^2 - 4}{x^2} \)

d. \(-f(x) = -\left(\frac{x^2 - 4}{x^2}\right) = \frac{4 - x^2}{x^2} = -\frac{x^2 - 4}{x^2} \)

e. \(f(x-2) = \frac{(x-2)^2 - 4}{(x-2)^2} = \frac{x^2 - 4x + 4 - 4}{(x-2)^2} = \frac{x^2 - 4x}{(x-2)^2} \)

f. \(f(2x) = \frac{(2x)^2 - 4}{(2x)^2} = \frac{4x^2 - 4}{4x^2} = \frac{4x^2}{4x^2} = 1 \)
Chapter 2 Review Exercises

f. \[f(2x) = \frac{(2x)^2 - 4}{(2x)^2} = \frac{4x^2 - 4}{4x^2} = \frac{x^2 - 1}{x^2} \]

8. \[f(x) = \frac{x^3}{x^2 - 9} \]
 a. \[f(2) = \frac{2^3}{2^2 - 9} = \frac{8}{4 - 9} = \frac{8}{-5} = -\frac{8}{5} \]
 b. \[f(2) = \frac{(-2)^3}{(-2)^2 - 9} = \frac{-8}{4 - 9} = \frac{-8}{-5} = \frac{8}{5} \]
 c. \[f(-x) = \frac{(-x)^3}{(-x)^2 - 9} = \frac{-x^3}{x^2 - 9} \]
 d. \[-f(x) = -\frac{x^3}{x^2 - 9} = \frac{-x^3}{x^2 - 9} \]
 e. \[f(x-2) = \frac{(x-2)^3}{(x-2)^2 - 9} = \frac{(x-2)^3}{x^2 - 4x + 4 - 9} = \frac{(x-2)^3}{x^2 - 4x - 5} \]
 f. \[f(2x) = \frac{(2x)^3}{(2x)^2 - 9} = \frac{8x^3}{4x^2 - 9} \]

9. \[f(x) = \frac{x}{x^2 - 9} \]
 The denominator cannot be zero:
 \[x^2 - 9 \neq 0 \]
 \[(x + 3)(x - 3) \neq 0 \]
 \[x \neq -3 \text{ or } 3 \]
 Domain: \(\{ x \mid x \neq -3, x \neq 3 \} \)

10. \[f(x) = \frac{3x^2}{x - 2} \]
 The denominator cannot be zero:
 \[x - 2 \neq 0 \]
 \[x \neq 2 \]
 Domain: \(\{ x \mid x \neq 2 \} \)

11. \[f(x) = \sqrt{2-x} \]
 The radicand must be non-negative:
 \[2-x \geq 0 \]
 \[x \leq 2 \]
 Domain: \(\{ x \mid x \leq 2 \} \) or \((-\infty, 2] \)

12. \[f(x) = \sqrt{x+2} \]
 The radicand must be non-negative:
 \[x + 2 \geq 0 \]
 \[x \geq -2 \]
 Domain: \(\{ x \mid x \geq -2 \} \) or \([-2, \infty) \)

13. \[f(x) = \sqrt[3]{x} \]
 The radicand must be non-negative and the denominator cannot be zero:
 \[x \geq 0 \]
 Domain: \(\{ x \mid x > 0 \} \) or \((0, \infty) \)

14. \[g(x) = \frac{1}{x} \]
 The denominator cannot be zero:
 \[x \neq 0 \]
 Domain: \(\{ x \mid x \neq 0 \} \)

15. \[f(x) = \frac{x}{x^2 + 2x - 3} \]
 The denominator cannot be zero:
 \[x^2 + 2x - 3 \neq 0 \]
 \[(x+3)(x-1) \neq 0 \]
 \[x \neq -3 \text{ or } 1 \]
 Domain: \(\{ x \mid x \neq -3, x \neq 1 \} \)

16. \[F(x) = \frac{1}{x^2 - 3x - 4} \]
 The denominator cannot be zero:
 \[x^2 - 3x - 4 \neq 0 \]
 \[(x+1)(x-4) \neq 0 \]
 \[x \neq -1 \text{ or } 4 \]
 Domain: \(\{ x \mid x \neq -1, x \neq 4 \} \)

17. \[f(x) = 2-x \quad g(x) = 3x+1 \]
 \[(f+g)(x) = f(x) + g(x) \]
 \[= 2-x + 3x+1 = 2x + 3 \]
 Domain: \(\{ x \mid x \text{ is any real number} \} \)

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall
Chapter 2: Functions and Their Graphs

18. \(f(x) = 2x - 1 \quad g(x) = 2x + 1 \)

\[
(f + g)(x) = f(x) + g(x) = 2x - 1 + 2x + 1 = 4x
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
(f - g)(x) = f(x) - g(x) = 2x - 1 - (2x + 1) = 2x - 1 - 2x - 1 = -2
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
(f \cdot g)(x) = f(x) \cdot g(x) = (2x - 1)(2x + 1) = 4x^2 - 1
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{2x - 1}{2x + 1}
\]

\(2x + 1 \neq 0 \Rightarrow 2x
eq -1 \Rightarrow x \neq -\frac{1}{2} \)

Domain: \(\{ x \mid x \neq -\frac{1}{2} \} \)

19. \(f(x) = 3x^2 + x + 1 \quad g(x) = 3x \)

\[
(f + g)(x) = f(x) + g(x) = 3x^2 + x + 1 + 3x = 3x^2 + 4x + 1
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
(f - g)(x) = f(x) - g(x) = 3x^2 + x + 1 - 3x = 3x^2 - 2x + 1
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
(f \cdot g)(x) = f(x) \cdot g(x) = (3x^2 + x + 1)(3x) = 9x^3 + 3x^2 + 3x
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{3x^2 + x + 1}{3x}
\]

\(3x \neq 0 \Rightarrow x \neq 0 \)

Domain: \(\{ x \mid x \neq 0 \} \)

20. \(f(x) = 3x \quad g(x) = 1 + x + x^2 \)

\[
(f + g)(x) = f(x) + g(x) = 3x + 1 + x + x^2 = x^2 + 4x + 1
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
(f - g)(x) = f(x) - g(x) = 3x - (1 + x + x^2) = -x^2 - 2x - 1
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
(f \cdot g)(x) = f(x) \cdot g(x) = (3x)(1 + x + x^2) = 3x + 3x^2 + 3x^3
\]

Domain: \(\{ x \mid x \text{ is any real number} \} \)

\[
\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{3x}{1 + x + x^2}
\]

\(1 + x + x^2 \neq 0 \)

\(x^2 + x + 1 \neq 0 \)
Since the discriminant is \(1^2 - 4(1)(1) = -3 < 0 \),
\(x^2 + x + 1 \) will never equal 0.
Domain: \(\{ x \mid x \text{ is any real number} \} \)

21. \(f(x) = \frac{x+1}{x-1} \quad g(x) = \frac{1}{x} \)
\((f + g)(x) = f(x) + g(x) \)
\[x + 1 + \frac{1}{x} = \frac{x(x+1)+(x-1)}{x(x-1)} \]
\[= \frac{x^2 + x + x - 1}{x(x-1)} = \frac{x^2 + 2x - 1}{x(x-1)} \]
Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)

\((f - g)(x) = f(x) - g(x) \)
\[= \frac{x + 1}{x - 1} - \frac{1}{x} = \frac{x(x + 1) - 1(x - 1)}{x(x - 1)} \]
\[= \frac{x^2 + x - x + 1}{x(x - 1)} = \frac{x^2 + 1}{x(x - 1)} \]
Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)

\((f \cdot g)(x) = f(x) \cdot g(x) \)
\[= \frac{x + 1}{x - 1} \cdot \frac{1}{x} = \frac{x + 1}{x(x - 1)} \]
Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)

\(\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} \)
\[= \frac{x + 1}{x - 1} \cdot \frac{1}{x} = \frac{x + 1}{x(x - 1)} \]
Domain: \(\{ x \mid x \neq 0, x \neq 1 \} \)

22. \(f(x) = \frac{1}{x-3} \quad g(x) = \frac{3}{x} \)
\((f + g)(x) = f(x) + g(x) \)
\[= \frac{1}{x-3} + \frac{3}{x} = \frac{x + 3(x - 3)}{x(x - 3)} \]
\[= \frac{x^2 + 3x - 9}{x(x - 3)} \]
Domain: \(\{ x \mid x \neq 0, x \neq 3 \} \)

\((f - g)(x) = f(x) - g(x) \)
\[= \frac{1}{x-3} - \frac{3}{x} = \frac{x - 3(x - 3)}{x(x - 3)} \]
\[= \frac{x - 3(x - 3)}{x(x - 3)} = \frac{x - 3x + 9}{x(x - 3)} \]
\[= \frac{-2x + 9}{x(x - 3)} \]
Domain: \(\{ x \mid x \neq 0, x \neq 3 \} \)

\((f \cdot g)(x) = f(x) \cdot g(x) = \left(\frac{1}{x-3} \right) \left(\frac{3}{x} \right) = \frac{3}{x(x - 3)} \)
Domain: \(\{ x \mid x \neq 0, x \neq 3 \} \)

\(\left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{1}{x-3} \cdot \frac{3}{x} \)
\[= \frac{x}{x-3} \]
\[= \frac{x}{3(x-3)} \]
Domain: \(\{ x \mid x \neq 0, x \neq 3 \} \)

23. \(f(x) = -2x^2 + x + 1 \)
\(\frac{f(x+h) - f(x)}{h} \)
\[= \frac{-2(x+h)^2 + (x+h) + 1 - (-2x^2 + x + 1)}{h} \]
\[= \frac{-2x^2 - 4hx + 4h^2 + x + h + 1}{h} \]
\[= \frac{2x^2 + 4hx + 4h^2}{h} \]
\[= \frac{4x - (-4x - 2h + 1)}{h} \]
\[= \frac{-4x - 2h + 1}{h} \]
\[= -4x - 2h + 1 \]
24. \(f(x) = 3x^2 - 2x + 4 \)

\[
\frac{f(x+h) - f(x)}{h} = \frac{3(x+h)^2 - 2(x+h) + 4 - (3x^2 - 2x + 4)}{h}
\]

\[
= \frac{3(x^2 + 2xh + h^2) - 2x - 2h + 4 - 3x^2 + 2x - 4}{h}
\]

\[
= \frac{3x^2 + 6xh + 3h^2 - 2x - 2h + 4 - 3x^2 + 2x - 4}{h}
\]

\[
= \frac{6xh + 3h^2 - 2h}{h} = h(6x + 3h - 2)
\]

\[
= 6x + 3h - 2
\]

25. a. Domain: \(\{ x \mid -4 \leq x \leq 3 \} \); \([-4, 3]\]

Range: \(\{ y \mid -3 \leq y \leq 3 \} \); \([-3, 3]\]

b. Intercept: \((0, 0)\)

c. \(f(-2) = -1 \)

d. \(f(x) = -3 \) when \(x = -4 \)

e. \(f(x) > 0 \) when \(0 < x \leq 3 \)
\(\{ x \mid 0 < x \leq 3 \}\)

f. To graph \(y = f(x-3) \), shift the graph of \(f \) horizontally 3 units to the right.

26. a. Domain: \(\{ x \mid -5 \leq x \leq 4 \} \); \([-5, 4]\]

Range: \(\{ y \mid -3 \leq y \leq 1 \} \); \([-3, 1]\]

b. \(g(-1) = 1 \)

c. Intercepts: \((0, 0), (4, 0)\)

d. \(g(x) = -3 \) when \(x = 3 \)

e. \(g(x) > 0 \) when \(-5 \leq x < 0\)
\(\{ x \mid -5 \leq x < 0 \}\)

f. To graph \(y = g(x-2) \), shift the graph of \(g \) horizontally 2 units to the right.
g. To graph $y = g(x) + 1$, shift the graph of g vertically up 1 unit.

h. To graph $y = 2g(x)$, stretch the graph of g vertically by a factor of 2.

27. a. Domain: \{ $x \mid -4 \leq x \leq 4$ \}; \([-4, 4]\)

 Range: \{ $y \mid -3 \leq y \leq 1$ \}; \([-3, 1]\)

 b. Increasing: \((-4, -1)\) and \((3, 4)\); Decreasing: \((-1, 3)\)

 c. Local minimum is -3 when $x = 3$; Local maximum is 1 when $x = -1$.

 Note that $x = 4$ and $x = -4$ do not yield local extrema because there is no open interval that contains either value.

 d. Absolute minimum is -3 when $x = 3$; Absolute maximum is 1 when $x = -1$.

 e. The graph is not symmetric with respect to the x-axis, the y-axis or the origin.

 f. The function is neither even nor odd.

 g. x-intercepts: \(-3, 0, 3\); y-intercept: 0

28. a. Domain: \{ $x \mid x$ is any real number \}

 Range: \{ $y \mid y$ is any real number \}

29. $f(x) = x^3 - 4x$

 $f(-x) = (-x)^3 - 4(-x) = -x^3 + 4x$

 $= -(x^3 - 4x) = -f(x)$

 f is odd.

30. $g(x) = \frac{4 + x^2}{1 + x^4}$

 $g(-x) = \frac{4 + (-x)^2}{1 + (-x)^4} = \frac{4 + x^2}{1 + x^4} = g(x)$

 g is even.

31. $h(x) = \frac{1}{x^4} + \frac{1}{x^2} + 1$

 $h(-x) = \frac{1}{(-x)^4} + \frac{1}{(-x)^2} + 1 = \frac{1}{x^4} + \frac{1}{x^2} + 1 = h(x)$

 h is even.

32. $F(x) = \sqrt{1 - x^3}$

 $F(-x) = \sqrt{1 - (-x)^3} = \sqrt{1 + x^3} \neq F(x)$ or $-F(x)$

 F is neither even nor odd.

33. $G(x) = 1 - x + x^3$

 $G(-x) = 1 - (-x) + (-x)^3$

 $= 1 + x - x^3 \neq -G(x)$ or $G(x)$

 G is neither even nor odd.

34. $H(x) = 1 + x + x^2$

 $H(-x) = 1 + (-x) + (-x)^2$

 $= 1 - x + x^2 \neq -H(x)$ or $H(x)$

 H is neither even nor odd.
35. \(f(x) = \frac{x}{1+x^2} \)
\(f(-x) = \frac{-x}{1+(-x)^2} = -\frac{x}{1+x^2} = -f(x) \)
\(f \) is odd.

36. \(g(x) = \frac{1+x^2}{x^3} \)
\(g(-x) = \frac{1+(-x)^2}{(-x)^3} = \frac{1+x^2}{-x^3} = -\frac{1+x^2}{x^3} = -g(x) \)
\(g \) is odd.

37. \(f(x) = 2x^3 - 5x + 1 \) on the interval \((-3, 3)\)
Use MAXIMUM and MINIMUM on the graph of \(y_1 = 2x^3 - 5x + 1 \).

38. \(f(x) = -x^3 + 3x - 5 \) on the interval \((-3, 3)\)
Use MAXIMUM and MINIMUM on the graph of \(y_1 = -x^3 + 3x - 5 \).

39. \(f(x) = 2x^4 - 5x^3 + 2x + 1 \) on the interval \((-2, 3)\)
Use MAXIMUM and MINIMUM on the graph of \(y_1 = 2x^4 - 5x^3 + 2x + 1 \).

40. \(f(x) = -x^4 + 3x^3 - 4x + 3 \) on the interval \((-2, 3)\)
Use MAXIMUM and MINIMUM on the graph of \(y_1 = -x^4 + 3x^3 - 4x + 3 \).

41. \(f(x) = 8x^2 - x \)
\(a. \) \(\frac{f(2) - f(1)}{2-1} = \frac{8(2)^2 - 2 - [8(1)^2 - 1]}{1} = \frac{32 - 2 - 7}{1} = 23 \)
\(b. \) \(\frac{f(1) - f(0)}{1-0} = \frac{8(1)^2 - 1 - [8(0)^2 - 0]}{1} = \frac{8 - 1 - 0}{1} = 7 \)
Chapter 2 Review Exercises

42. \(f(x) = 2x^3 + x \)

 a. \(f(2) - f(1) = \frac{2(2)^3 + 2 - (2(1)^3 + 1)}{2-1} = \frac{16 + 2 - (3)}{1} = 15 \)

 b. \(f(1) - f(0) = \frac{2(1)^3 + 1 - (2(0)^3 + 0)}{1-0} = \frac{2 + 1 - (0)}{1} = 3 \)

 c. \(f(4) - f(2) = \frac{2(4)^3 + 4 - (2(2)^3 + 2)}{4-2} = \frac{128 + 4 - (18)}{2} = \frac{114}{2} = 57 \)

43. \(f(x) = 2 - 5x \)

 \(f(3) - f(2) = \frac{[2-5(3)]-[2-5(2)]}{3-2} = \frac{(2-15)-(2-10)}{1} = -13 - (-8) = -5 \)

44. \(f(x) = 2x^2 + 7 \)

 \(f(3) - f(2) = \frac{[2(3)^2 + 7] - [2(2)^2 + 7]}{3-2} = \frac{(18+7)-(8+7)}{1} = 25 - 15 = 10 \)

45. \(f(x) = 3x - 4x^2 \)

 \(f(3) - f(2) = \frac{[3(3) - 4(3)^2] - [3(2) - 4(2)^2]}{3-2} = \frac{(9-36) - (6-16)}{1} = -27 + 10 = -17 \)

46. \(f(x) = x^2 - 3x + 2 \)

 \(f(3) - f(2) = \frac{[3^2 - 3(3) + 2] - [2^2 - 3(2) + 2]}{3-2} = \frac{(9-9+2)-(4-6+2)}{1} = \frac{2-0}{2} = \frac{2}{2} = 1 \)

47. The graph does not pass the Vertical Line Test and is therefore not a function.

48. The graph passes the Vertical Line Test and is therefore a function.

49. The graph passes the Vertical Line Test and is therefore a function.

50. The graph passes the Vertical Line Test and is therefore a function.

51. \(f(x) = |x| \)

52. \(f(x) = \sqrt{x} \)
Chapter 2: Functions and Their Graphs

53. \(f(x) = \sqrt{x} \)

54. \(f(x) = \frac{1}{x} \)

55. \(F(x) = |x| - 4 \). Using the graph of \(y = |x| \), vertically shift the graph downward 4 units.

56. \(f(x) = |x| + 4 \). Using the graph of \(y = |x| \), vertically shift the graph upward 4 units.

57. \(g(x) = -2|x| \). Reflect the graph of \(y = |x| \) about the \(x \)-axis and vertically stretch the graph by a factor of 2.

58. \(g(x) = \frac{1}{2}|x| \). Using the graph of \(y = |x| \), vertically shrink the graph by a factor of \(\frac{1}{2} \).
59. \(h(x) = \sqrt{x - 1} \). Using the graph of \(y = \sqrt{x} \), horizontally shift the graph to the right 1 unit.

Intercept: \((1, 0)\)
Domain: \(\{x \mid x \geq 1\}\) or \([1, \infty)\)
Range: \(\{y \mid y \geq 0\}\) or \([0, \infty)\)

60. \(h(x) = \sqrt{x} - 1 \). Using the graph of \(y = \sqrt{x} \), vertically shift the graph downward 1 unit.

Intercepts: \((1, 0), (0, -1)\)
Domain: \(\{x \mid x \geq 0\}\) or \([0, \infty)\)
Range: \(\{y \mid y \geq -1\}\) or \([-1, \infty)\)

62. \(f(x) = -\sqrt{x + 3} \). Using the graph of \(y = \sqrt{x} \), horizontally shift the graph to the left 3 units, and reflect on the \(x\)-axis.

Intercepts: \((-3, 0), (0, -\sqrt{3})\)
Domain: \(\{x \mid x \geq -3\}\) or \([-3, \infty)\)
Range: \(\{y \mid y \leq 0\}\) or \((-\infty, 0]\)

63. \(h(x) = (x - 1)^2 + 2 \). Using the graph of \(y = x^2 \), horizontally shift the graph to the right 1 unit and vertically shift the graph up 2 units.

Intercepts: \((0, 3)\)
Domain: \(\{x \mid x \text{ is any real number}\}\)
Range: \(\{y \mid y \geq 2\}\) or \([2, \infty)\)

64. \(h(x) = (x + 2)^2 - 3 \). Using the graph of \(y = x^2 \), horizontally shift the graph to the left 2 units and vertically shift the graph down 3 units.

Intercepts: \((0, 1), (-2 + \sqrt{3}, 0), (-2 - \sqrt{3}, 0)\)
Chapter 2: Functions and Their Graphs

Domain: \(\{ x \mid x \text{ is any real number} \} \)
Range: \(\{ y \mid y \geq -3 \} \) or \([-3, \infty)\)

65. \(g(x) = 3(x-1)^3 + 1 \). Using the graph of \(y = x^3 \), horizontally shift the graph to the right 1 unit, vertically stretch the graph by a factor of 3, and vertically shift the graph up 1 unit.

Using the graph of \(y = x^3 \), horizontally shift the graph to the right 1 unit, vertically stretch the graph by a factor of 3, and vertically shift the graph up 1 unit.

66. \(g(x) = -2(x+2)^3 - 8 \)
Using the graph of \(y = x^3 \), horizontally shift the graph to the left 2 units, vertically stretch the graph by a factor of 2, reflect about the \(x \)-axis, and vertically shift the graph down 8 units.

67. \(f(x) = \begin{cases} 3x & \text{if } -2 < x \leq 1 \\ x+1 & \text{if } x > 1 \end{cases} \)

a. Domain: \(\{ x \mid x > -2 \} \) or \((-2, \infty)\)
b. Intercept: \((0, 0)\)
c. Graph:

d. Range: \(\{ y \mid y > -6 \} \) or \((-6, \infty)\)
e. There is a jump in the graph at \(x = 1 \). Therefore, the function is not continuous.

68. \(f(x) = \begin{cases} x-1 & \text{if } -3 < x < 0 \\ 3x-1 & \text{if } x \geq 0 \end{cases} \)

a. Domain: \(\{ x \mid x > -3 \} \) or \((-3, \infty)\)
b. Intercepts: \(\left(\frac{1}{3}, 0\right), (0, -1)\)
c. Graph:

d. Range: \(\{ y \mid y > -4 \} \) or \((-4, \infty)\)
e. There are no holes, gaps, or jumps over the domain of the function. Therefore, the function is continuous over its domain.

69. \(f(x) = \begin{cases} x & \text{if } -4 \leq x < 0 \\ 1 & \text{if } x = 0 \\ 3x & \text{if } x > 0 \end{cases} \)

a. Domain: \(\{ x \mid x \geq -4 \} \) or \([-4, \infty)\)
b. Intercept: (0, 1)
c. Graph:

\[\frac{Ax + 5}{6x - 2} \]

\[A(1) + 5 \]

\[\frac{6(1)}{2} \]

\[A + 5 = 4 \]

\[A = 11 \]

d. Range: \{y \mid y \geq -4, y \neq 0\}
e. There is a jump at \(x = 0 \). Therefore, the function is not continuous.

70. \(f(x) = \begin{cases} \frac{x^2}{2x - 1} & \text{if } -2 \leq x \leq 2 \\ x^2 & \text{if } x > 2 \end{cases} \)
a. Domain: \{x \mid x \geq -2\} or \([-2, \infty)\)
b. Intercept: (0, 0)
c. Graph:

d. Range: \{y \mid y \geq 0\} or \([0, \infty)\)
e. There is a jump at \(x = 2 \). Therefore, the function is not continuous.

71. \(f(x) = \frac{Ax^2 + 5}{6x - 2} \) and \(f(1) = 4 \)

\[A(1) + 5 \]

\[\frac{6(1)}{2} \]

\[A + 5 = 4 \]

\[A = 16 \]

\[A = 11 \]

72. \(g(x) = \frac{A}{x} + \frac{8}{x^2} \) and \(g(-1) = 0 \)

\[\frac{A}{-1} + \frac{8}{(-1)^2} = 0 \]

\[-A + 8 = 0 \]

\[A = 8 \]

73. a. The printed region is a rectangle. Its area is given by

\[A = (\text{length})(\text{width}) = (11 - 2x)(8.5 - 2x) \]

\[A(x) = (11 - 2x)(8.5 - 2x) \]

b. For the domain of \(A(x) = (11 - 2x)(8.5 - 2x) \) recall that the dimensions of a rectangle must be non-negative.

\[x \geq 0 \text{ and } 11 - 2x > 0 \text{ and } 8.5 - 2x > 0 \]

\[2x > -11 \]

\[2x > 8.5 \]

\[x < 5.5 \]

\[x < 4.25 \]

The domain is given by \(0 \leq x < 4.25 \).

The range of \(A(x) = (11 - 2x)(8.5 - 2x) \) is given by \(A(4.25) < A \leq A(0) \Rightarrow 0 < A \leq 93.5 \).

c. \(A(1) = (11 - 2(1))(8.5 - 2(1)) \)

\[= 9 \cdot 6.5 = 58.5 \text{ in}^2 \]

\(A(1.2) = (11 - 2(1.2))(8.5 - 2(1.2)) \)

\[= 8.6 \cdot 6.1 = 52.46 \text{ in}^2 \]

\(A(1.5) = (11 - 2(1.5))(8.5 - 2(1.5)) \)

\[= 8.5 \cdot 5.5 = 44.25 \text{ in}^2 \]

d. \(y_i = (11 - 2x)(8.5 - 2x) \)

74. a. \(x^2h = 10 \Rightarrow h = \frac{10}{x^2} \)

\[A(x) = 2x^2 + 4xh \]

\[= 2x^2 + 4x \left(\frac{10}{x^2} \right) \]

\[= 2x^2 + \frac{40}{x} \]

b. \(A(l) = 2 \cdot l^2 + \frac{40}{l} = 2 + 40 = 42 \text{ ft}^2 \)
Chapter 2: Functions and Their Graphs

c. \[A(2) = 2 \cdot 2^2 + \frac{40}{2} = 8 + 20 = 28 \text{ ft}^2 \]
d. Graphing:

![Graph of a quadratic function]

The area is smallest when \(x = 2.15 \) feet.

Chapter 2 Test

1. a. \(\{(2,5),(4,6),(6,7),(8,8)\} \)
 This relation is a function because there are no ordered pairs that have the same first element and different second elements.
 Domain: \(\{2,4,6,8\} \)
 Range: \(\{5,6,7,8\} \)

b. \(\{(1,3),(4,2),(-3,5),(1,7)\} \)
 This relation is not a function because there are two ordered pairs that have the same first element but different second elements.

c. This relation is not a function because the graph fails the vertical line test.

d. This relation is a function because it passes the vertical line test.
 Domain: \(\{x \mid x \text{ is any real number}\} \)
 Range: \(\{y \mid y \geq 2\} \) or \([2, \infty) \)

2. \(f(x) = \sqrt{4-5x} \)
 The function tells us to take the square root of \(4-5x \). Only nonnegative numbers have real square roots so we need \(4-5x \geq 0 \).

75. a. Consider the following diagram:

![Graph of a quadratic function]

The area of the rectangle is \(A = xy \). Thus, the area function for the rectangle is:
\[A(x) = x(10-x^2) = -x^3 + 10x \]
b. The maximum value occurs at the vertex:

![Graph of a quadratic function]

The maximum area is roughly:
\[A(1.83) = -(1.83)^3 + 10(1.83) \]
\[= 12.17 \text{ square units} \]
we need to exclude any values which make the denominator 0.

\[x^2 + 5x - 36 = 0 \]
\[(x + 9)(x - 4) = 0 \]
\[x = -9 \quad \text{or} \quad x = 4 \]

Domain: \(\{ x \mid x \neq -9, x \neq 4 \} \)

(none: there is a common factor of \(x - 4 \) but we must determine the domain prior to simplifying)

\[h(-1) = \frac{(-1) - 4}{(-1)^2 + 5(-1) - 36} = \frac{-5}{-40} = \frac{1}{8} \]

5. a. To find the domain, note that all the points on the graph will have an \(x \)-coordinate between \(-5\) and \(5 \), inclusive. To find the range, note that all the points on the graph will have a \(y \)-coordinate between \(-3\) and \(3 \), inclusive.

Domain: \(\{ x \mid -5 \leq x \leq 5 \} \) or \([-5, 5]\)

Range: \(\{ y \mid -3 \leq y \leq 3 \} \) or \([-3, 3]\)

b. The intercepts are \((0,2), (-2,0), \) and \((2,0)\).

\(x \)-intercepts: \(-2, 2\)

\(y \)-intercept: \(2\)

c. \(f(1) \) is the value of the function when \(x = 1 \). According to the graph, \(f(1) = 3 \).

d. Since \((-5,-3)\) and \((3,-3)\) are the only points on the graph for which
\(y = f(x) = -3 \), we have
\(f(x) = -3 \) when
\(x = -5 \) and \(x = 3 \).

e. To solve \(f(x) < 0 \), we want to find \(x \)-values such that the graph is below the \(x \)-axis. The graph is below the \(x \)-axis for values in the domain that are less than \(-2\) and greater than \(2\). Therefore, the solution set is \(\{ x \mid -5 \leq x < -2 \quad \text{or} \quad 2 < x \leq 5 \} \). In interval notation we would write the solution set as \([-5,-2) \cup (2,5]\).

6. \(f(x) = -x^4 + 2x^3 + 4x^2 - 2 \)

We set \(\text{Xmin} = -5 \) and \(\text{Xmax} = 5 \). The standard \(\text{Ymin} \) and \(\text{Ymax} \) will not be good enough to see the whole picture so some adjustment must be made.

b. To find the intercepts, notice that the only piece that hits either axis is \(y = x - 4 \).
Chapter 2: Functions and Their Graphs

\[y = x - 4 \]
\[y = 0 - 4 \]
\[y = -4 \]

The intercepts are \((0, -4)\) and \((4, 0)\).

c. To find \(g(-5)\) we first note that \(x = -5\) so we must use the first “piece” because \(-5 < -1\).

\(g(-5) = 2(-5) + 1 = -10 + 1 = -9\)

d. To find \(g(2)\) we first note that \(x = 2\) so we must use the second “piece” because \(2 \geq -1\).

\(g(2) = 2 - 4 = -2\)

8. The average rate of change from 3 to 4 is given by

\[
\frac{\Delta y}{\Delta x} = \frac{f(4) - f(3)}{4 - 3}
\]

\[
= \frac{(3(4)^2 - 2(4) + 4) - (3(3)^2 - 2(3) + 4)}{4 - 3}
\]

\[
= \frac{44 - 25}{4 - 3} = \frac{19}{1} = 19
\]

9. a. \(f - g = (2x^2 + 1) - (3x - 2)\)

\[= 2x^2 + 1 - 3x + 2 = 2x^2 - 3x + 3\]

b. \(f \cdot g = (2x^2 + 1)(3x - 2) = 6x^3 - 4x^2 + 3x - 2\)

c. \(f(x + h) - f(x)\)

\[= (2(x + h)^2 + 1) - (2x^2 + 1)\]

\[= (2(x^2 + 2xh + h^2) + 1) - (2x^2 + 1)\]

\[= 2x^2 + 4xh + 2h^2 + 1 - 2x^2 - 1\]

\[= 4xh + 2h^2\]

10. a. The basic function is \(y = x^3\) so we start with the graph of this function.

Next we shift this graph 1 unit to the left to obtain the graph of \(y = (x + 1)^3\).

b. The basic function is \(y = |x|\) so we start with the graph of this function.
11. a. \(r(x) = -0.115x^2 + 1.183x + 5.623 \)

For the years 1992 to 2004, we have values of \(x \) between 0 and 12. Therefore, we can let \(X_{\text{min}} = 0 \) and \(X_{\text{max}} = 12 \). Since \(r \) is the interest rate as a percent, we can try letting \(Y_{\text{min}} = 0 \) and \(Y_{\text{max}} = 10 \).

The highest rate during this period appears to be 8.67%, occurring in 1997 (\(x = 5 \)).

b. For 2010, we have \(x = 2010 - 1992 = 18 \).

\[
\begin{align*}
 r(18) &= -0.115(18)^2 + 1.183(18) + 5.623 \\
 &= -10.343
\end{align*}
\]

The model predicts that the interest rate will be -10.343%. This is not a reasonable value since it implies that the bank would be paying interest to the borrower.

12. a. Let \(x = \) width of the rink in feet. Then the length of the rectangular portion is given by \(2x - 20 \). The radius of the semicircular portions is half the width, or \(r = \frac{x}{2} \).

To find the volume, we first find the area of the surface and multiply by the thickness of the ice. The two semicircles can be combined to form a complete circle, so the area is given by

\[
A = l \cdot w + \pi r^2 = (2x - 20)(x) + \pi \left(\frac{x}{2}\right)^2
\]

\[
= 2x^2 - 20x + \frac{\pi x^2}{4}
\]

We have expressed our measures in feet so we need to convert the thickness to feet as well.

\[
0.75 \text{ in} \cdot \frac{1 \text{ ft}}{12 \text{ in}} = \frac{0.75}{12} \text{ ft} = \frac{1}{16} \text{ ft}
\]

Now we multiply this by the area to obtain the volume. That is,

\[
V(x) = \frac{1}{16} \left(2x^2 - 20x + \frac{\pi x^2}{4}\right)
\]

\[
= \frac{x^2}{8} - \frac{5x}{4} + \frac{\pi x^2}{64}
\]

b. If the rink is 90 feet wide, then we have \(x = 90 \).
Chapter 2: Functions and Their Graphs

\[V(90) = \frac{90^3}{8} - \frac{5(90)}{4} + \frac{\pi(90)^2}{64} = 1297.61 \]

The volume of ice is roughly 1297.61 ft³.

Chapter 2 Cumulative Review

1. \[3x - 8 = 10 \]
 \[3x - 8 + 8 = 10 + 8 \]
 \[3x = 18 \]
 \[\frac{3x}{3} = \frac{18}{3} \]
 \[x = 6 \]

The solution set is \{6\}.

2. \[3x^2 - x = 0 \]
 \[x(3x - 1) = 0 \]
 \[x = 0 \text{ or } 3x - 1 = 0 \]
 \[3x = 1 \]
 \[\frac{3x}{3} = \frac{1}{3} \]

The solution set is \{0, \frac{1}{3}\}.

3. \[x^2 - 8x - 9 = 0 \]
 \[(x - 9)(x + 1) = 0 \]
 \[x - 9 = 0 \text{ or } x + 1 = 0 \]
 \[x = 9 \text{ or } x = -1 \]

The solution set is \{-1, 9\}.

4. \[6x^2 - 5x + 1 = 0 \]
 \[(3x - 1)(2x - 1) = 0 \]
 \[3x - 1 = 0 \text{ or } 2x - 1 = 0 \]
 \[3x = 1 \text{ or } 2x = 1 \]
 \[\frac{3x}{3} = \frac{1}{3} \text{ or } \frac{2x}{2} = \frac{1}{2} \]

The solution set is \{\frac{1}{3}, \frac{1}{2}\}.

5. \[|2x + 3| = 4 \]
 \[2x + 3 = -4 \text{ or } 2x + 3 = 4 \]
 \[2x = -7 \text{ or } 2x = 1 \]
 \[x = -\frac{7}{2} \text{ or } x = \frac{1}{2} \]

The solution set is \{-\frac{7}{2}, \frac{1}{2}\}.

6. \[\sqrt{2x + 3} = 2 \]
 \[(\sqrt{2x + 3})^2 = 2^2 \]
 \[2x + 3 = 4 \]
 \[2x = 1 \]
 \[x = \frac{1}{2} \]

Check:
\[\sqrt{2(\frac{1}{2}) + 3} = 2 \]
\[\sqrt{1 + 3} = 2 \]
\[\sqrt{4} = 2 \]
\[2 = 2 \text{ True} \]

The solution set is \{\frac{1}{2}\}.

7. \[2 - 3x > 6 \]
 \[-3x > 4 \]
 \[x < -\frac{4}{3} \]

Solution set: \(\{x | x < -\frac{4}{3}\} \)

Interval notation: \((-\infty, -\frac{4}{3}) \)

8. \[|2x - 5| < 3 \]
 \[-3 < 2x - 5 < 3 \]
 \[2 < 2x < 8 \]
 \[1 < x < 4 \]

Solution set: \(\{x | 1 < x < 4\} \)
9. \(|4x + 1| \geq 7\)
 \(4x + 1 \leq -7\) or \(4x + 1 \geq 7\)
 \(4x \leq -8\) or \(4x \geq 6\)
 \(x \leq -2\) or \(x \geq \frac{3}{2}\)

 Solution set: \(\{x \in \mathbb{R} \mid x \leq -2 \text{ or } x \geq \frac{3}{2}\}\)

 Interval notation: \((-\infty, -2] \cup \left[\frac{3}{2}, \infty\right)\)

10. a. \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)

 \(= \sqrt{(3-(-2))^2 + (-5-(-3))^2}\)

 \(= \sqrt{(3+2)^2 + (-5+3)^2}\)

 \(= \sqrt{5^2 + (-2)^2} = \sqrt{25 + 4}\)

 \(= \sqrt{29}\)

b. \(M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)\)

 \(= \left(\frac{-2 + 3}{2}, \frac{-3 + (-5)}{2} \right)\)

 \(= \left(\frac{1}{2}, -4 \right)\)

c. \(m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-5 - (-3)}{3 - (-2)} = -\frac{2}{5}\)

11. \(3x - 2y = 12\)

 x-intercept:
 \(3x - 2(0) = 12\)
 \(3x = 12\)
 \(x = 4\)

 The point \((4, 0)\) is on the graph.

 y-intercept:
 \(3(0) - 2y = 12\)
 \(-2y = 12\)
 \(y = -6\)

 The point \((0, -6)\) is on the graph.

12. \(x = y^2\)

 \(\begin{array}{c|c|c}
 y & x = y^2 & (x, y) \\
 \hline
 -2 & x = (-2)^2 = 4 & (4, -2) \\
 -1 & x = (-1)^2 = 1 & (1, -1) \\
 0 & x = 0^2 = 0 & (0, 0) \\
 1 & x = 1^2 = 1 & (1, 1) \\
 2 & x = 2^2 = 4 & (4, 2) \\
 \end{array}\)

13. \(x^2 + (y - 3)^2 = 16\)

 This is the equation of a circle with radius \(r = \sqrt{16} = 4\) and center at \((0, 3)\). Starting at the center we can obtain some points on the graph by moving 4 units up, down, left, and right. The corresponding points are \((0, 7), (0, -1), (4, 2), (-1, -1)\).
Chapter 2: Functions and Their Graphs

14. \(y = \sqrt{x} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \sqrt{x})</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(y = \sqrt{0} = 0)</td>
<td>((0, 0))</td>
</tr>
<tr>
<td>1</td>
<td>(y = \sqrt{1} = 1)</td>
<td>((1, 1))</td>
</tr>
<tr>
<td>4</td>
<td>(y = \sqrt{4} = 2)</td>
<td>((4, 2))</td>
</tr>
</tbody>
</table>

15. \(3x^2 - 4y = 12 \)

- **x-intercepts:**
 \(3x^2 - 4(0) = 12 \)
 \(3x^2 = 12 \)
 \(x^2 = 4 \)
 \(x = \pm 2 \)

- **y-intercept:**
 \(3(0)^2 - 4y = 12 \)
 \(-4y = 12 \)
 \(y = -3 \)

The intercepts are \((-2, 0)\), \((2, 0)\), and \((0, -3)\).

Check \(x \)-axis symmetry:
\(3x^2 - 4(-y) = 12 \)
\(3x^2 + 4y = 12 \) different

Check \(y \)-axis symmetry:
\(3(-x)^2 - 4y = 12 \)
\(3x^2 - 4y = 12 \) same

Check origin symmetry:
\(3(-x)^2 - 4(-y) = 12 \)
\(3x^2 + 4y = 12 \) different

The graph of the equation has \(y \)-axis symmetry.

16. First we find the slope:
\[m = \frac{8 - 4}{6 - (-2)} = \frac{4}{8} = \frac{1}{2} \]

Next we use the slope and the given point \((6, 8)\) in the point-slope form of the equation of a line:
\[y - y_1 = m(x - x_1) \]
\[y - 8 = \frac{1}{2}(x - 6) \]
\[y - 8 = \frac{1}{2}x - 3 \]
\[y = \frac{1}{2}x + 5 \]

17. \(f(x) = (x + 2)^2 - 3 \)

Starting with the graph of \(y = x^2 \), shift the graph
2 units to the left \(\left[y = (x + 2)^2 \right] \) and down 3 units \(\left[y = (x + 2)^2 - 3 \right] \).
Chapter 2 Projects

Project I – Internet Based Project – Answers will vary

Project II

1. Silver: \(C(x) = 20 + 0.16(x - 200) = 0.16x - 12 \)
\[
C(x) = \begin{cases}
20 & 0 \leq x \leq 200 \\
0.16x - 12 & x > 200
\end{cases}
\]
Gold: \(C(x) = 50 + 0.08(x - 1000) = 0.08x - 30 \)
\[
C(x) = \begin{cases}
50.00 & 0 \leq x \leq 1000 \\
0.08x - 30 & x > 1000
\end{cases}
\]
Platinum: \(C(x) = 100 + 0.04(x - 3000)
\)
\[
C(x) = \begin{cases}
100.00 & 0 \leq x \leq 3000 \\
0.04x - 20 & x > 3000
\end{cases}
\]
2. \(f(x) = \frac{1}{x} \)
<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \frac{1}{x})</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>(y = \frac{1}{-1} = -1)</td>
<td>(-1, -1)</td>
</tr>
<tr>
<td>1</td>
<td>(y = \frac{1}{1} = 1)</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>2</td>
<td>(y = \frac{1}{2})</td>
<td>((2, \frac{1}{2}))</td>
</tr>
</tbody>
</table>

19. \(f(x) = \begin{cases} 2-x & \text{if } x \leq 2 \\
|x| & \text{if } x > 2
\end{cases} \)

Graph the line \(y = 2 - x \) for \(x \leq 2 \). Two points on the graph are \((0, 2)\) and \((2, 0)\).

Graph the line \(y = x \) for \(x > 2 \). There is a hole in the graph at \(x = 2 \).

3. Let \(y = \#\text{K-bytes of service over the plan minimum} \).
Silver: \(20 + 0.16y \leq 50 \)
\[
0.16y \leq 30 \\
y \leq 187.5
\]
Silver is the best up to 187.5 K-bytes of service.
Gold: \(50 + 0.08y \leq 100 \)
\[
0.08y \leq 50 \\
y \leq 625
\]
Gold is the best from 387.5 K-bytes to 625 K-bytes of service.
Platinum: Platinum will be the best if more than 1625 K-bytes is needed.
4. Answers will vary.
Chapter 2: Functions and Their Graphs

Project III

1. Driveway

2 miles

Possible route 1

5 miles

Cable box

Highway

Possible route 2

2. House

$140/mile

2 miles

$L = \sqrt{4 + (5 - x)^2}$

5 miles

$100/mile$

Cable box

$C(x) = 100x + 140L$

$C(x) = 100x + 140\sqrt{4 + (5 - x)^2}$

3. x

$C(x)$

0

100(0) + 140\sqrt{4 + 25} = $753.92

1

100(1) + 140\sqrt{4 + 16} = $726.10

2

100(2) + 140\sqrt{4 + 9} = $704.78

3

100(3) + 140\sqrt{4 + 4} = $695.98

4

100(4) + 140\sqrt{4 + 1} = $713.05

5

100(5) + 140\sqrt{4 + 0} = $780.00

The choice where the cable goes 3 miles down the road then cutting up to the house seems to yield the lowest cost.

4. Since all of the costs are less than $800, there would be a profit made with any of the plans.

$C(x) = 800$

Using the MINIMUM function on a graphing calculator, the minimum occurs at $x = 2.96$.

6. $C(4.5) = 100(4.5) + 140\sqrt{4 + (5 - 4.5)^2} = $738.62

The cost for the Steven’s cable would be $738.62.

7. 5000(738.62) = $3,693,100

State legislated

5000(695.96) = $3,479,800

cheapest cost

It will cost the company $213,300 more.

Project IV

1. $A = \pi r^2$

2. $r = 2.2t$

3. $r = 2.2(2) = 4.4$ ft

$r = 2.2(2.5) = 5.5$ ft

4. $A = \pi(4.4)^2 = 60.82$ ft2

$A = \pi(5.5)^2 = 95.03$ ft2

5. $A = (2.2t)^2 = 4.84\pi t^2$

6. $A = 4.84\pi(2)^2 = 60.82$ ft2

$A = 4.84\pi(2.5)^2 = 95.03$ ft2

7. $A(2.5) - A(2) = \frac{95.03 - 60.82}{2.5 - 2} = \frac{68.21}{0.5} = 136.42$ ft/hr

8. $A(3.5) - A(3) = \frac{186.27 - 136.85}{3.5 - 3} = \frac{49.42}{0.5} = 98.84$ ft/hr

9. The average rate of change is increasing.

10. 150 yds = 450 ft

$r = 2.2t$

$t = \frac{450}{2.2} = 204.5$ hours

11. 6 miles = 31680 ft

Therefore, we need a radius of 15,840 ft.

$t = \frac{15,840}{2.2} = 7200$ hours